-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathlayers.py
46 lines (40 loc) · 1.71 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import torch
import torch.nn as nn
'''
Code source: https://github.com/heykeetae/Self-Attention-GAN/blob/master/sagan_models.py
'''
class Self_Attn(nn.Module):
""" Self attention Layer"""
def __init__(self, in_dim, activation):
super(Self_Attn, self).__init__()
self.chanel_in = in_dim
self.activation = activation
self.query_conv = nn.Conv2d(
in_channels=in_dim, out_channels=in_dim//8, kernel_size=1)
self.key_conv = nn.Conv2d(
in_channels=in_dim, out_channels=in_dim//8, kernel_size=1)
self.value_conv = nn.Conv2d(
in_channels=in_dim, out_channels=in_dim, kernel_size=1)
self.gamma = nn.Parameter(torch.zeros(1))
self.softmax = nn.Softmax(dim=-1)
def forward(self, x):
"""
inputs :
x : input feature maps( B X C X W X H)
returns :
out : self attention value + input feature
attention: B X N X N (N is Width*Height)
"""
m_batchsize, C, width, height = x.size()
proj_query = self.query_conv(x).view(
m_batchsize, -1, width*height).permute(0, 2, 1) # B X CX(N)
proj_key = self.key_conv(x).view(
m_batchsize, -1, width*height) # B X C x (*W*H)
energy = torch.bmm(proj_query, proj_key) # transpose check
attention = self.softmax(energy) # BX (N) X (N)
proj_value = self.value_conv(x).view(
m_batchsize, -1, width*height) # B X C X N
out = torch.bmm(proj_value, attention.permute(0, 2, 1))
out = out.view(m_batchsize, C, width, height)
out = self.gamma*out + x
return out, attention