-
Notifications
You must be signed in to change notification settings - Fork 0
/
implicit_als_train.cpp
174 lines (142 loc) · 4.94 KB
/
implicit_als_train.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
/***************************************************
*
* file: implicit_als_train_train.cpp
*
* Copyright (C) Angela Burova and Egor Smirnov 2017
*
****************************************************
*/
#include "implicit_als_train.h"
#include "matrix_operations.h"
#include <random>
#include <vector>
namespace als
{
template class Train<float>;
template class Train<double>;
template<typename T>
void Train<T>::compute(TablePtr<T> data)
{
initModel(data);
computeInternal(data);
}
template<typename T>
void Train<T>::initModel(TablePtr<T>& data)
{
this->_nFactors = this->parameter.nFactors;
this->_nUsers = data->getNumberOfRows();
this->_nItems = data->getNumberOfColumns();
TablePtr<T> usersFactors(new Table<T>(this->_nFactors, this->_nUsers));
TablePtr<T> itemsFactors(new Table<T>(this->_nFactors, this->_nItems));
initItemsFactors(itemsFactors, data);
this->_model = ModelPtr<T>(new Model<T>(usersFactors, itemsFactors));
}
template<typename T>
void Train<T>::initItemsFactors(TablePtr<T>& itemsFactors, TablePtr<T>& dataPtr)
{
const T* const data = dataPtr->getPtr();
T* const items = itemsFactors->getPtr();
for (size_t i = 0u; i < this->_nItems; ++i)
{
T sum = 0.0f;
size_t ratedUsers = 0u;
for(size_t j = 0u; j < this->_nUsers; ++j)
{
if (data[j * this->_nItems + i])
{
sum += data[j * this->_nItems + i];
++ratedUsers;
}
}
items[i] = ratedUsers > 0 ? sum / ratedUsers : 0;
}
std::default_random_engine generator (777);
std::uniform_real_distribution<T> distribution (0.0,1.0);
for (size_t i = 0u; i < this->_nItems; ++i)
{
for(size_t j = 0u; j < this->_nFactors; ++j)
{
items[j*this->_nItems + i] = distribution(generator);
}
}
}
template<typename T>
void Train<T>::computeInternal(TablePtr<T>& dataPtr)
{
const size_t nIter = this->parameter.nIteration;
TablePtr<T> tData = utils::getTransposeMatrix(dataPtr);
TablePtr<T> usersFactors = this->_model->getUsersFactors();
TablePtr<T> itemsFactors = this->_model->getItemsFactors();
for (size_t i = 0u; i < nIter; ++i)
{
updateFactors(itemsFactors, usersFactors, dataPtr);
updateFactors(usersFactors, itemsFactors, tData);
}
}
template<typename T>
void Train<T>::updateFactors(TablePtr<T> otherFactors, TablePtr<T> currentFactors, TablePtr<T>& dataPtr)
{
const size_t nCols = currentFactors->getNumberOfColumns();
for(size_t j = 0u; j < nCols; ++j)
{
auto pair = getSubMatrixes(dataPtr, otherFactors, j);
TablePtr<T> subMatrix = pair.first;
TablePtr<T> R = pair.second;
if (subMatrix->getNumberOfColumns() == 0) return; // case when Users hasn't ratings
TablePtr<T> subTransposeMatrix = utils::getTransposeMatrix(subMatrix);
TablePtr<T> regularization = getRegularization(subMatrix->getNumberOfColumns());
TablePtr<T> MMt = utils::matrixMultiplication(subMatrix, subTransposeMatrix);
TablePtr<T> A = utils::matrixSum(MMt, regularization);
TablePtr<T> A_1 = utils::invertMatrix(A);
TablePtr<T> V = utils::matrixMultiplication(subMatrix, R);
TablePtr<T> U = utils::matrixMultiplication(A_1, V);
for(size_t i = 0u; i < this->_nFactors; ++i)
{
(*currentFactors)[i * nCols + j] = (*U)[i];
}
}
}
template<typename T>
TablePtr<T> Train<T>::getRegularization(const size_t nonZero)
{
TablePtr<T> regularization(new Table<T>(this->_nFactors, this->_nFactors));
for(size_t i = 0u; i < this->_nFactors; ++i)
for(size_t j = 0u; j < this->_nFactors; ++j)
{
(*regularization)[i*this->_nFactors + j] = 0;
}
const T lambda = (T)this->parameter.lambda;
const T mult = lambda* (T)nonZero;
for(size_t i = 0u; i < this->_nFactors; ++i)
{
(*regularization)[i*this->_nFactors + i] = mult;
}
return regularization;
}
template<typename T>
std::pair<TablePtr<T>, TablePtr<T>> Train<T>::getSubMatrixes(TablePtr<T>& dataPtr, TablePtr<T> factors, const size_t idx)
{
const size_t nCols = dataPtr->getNumberOfColumns();
std::vector<size_t> dimensions;
for (size_t j = 0u; j < nCols; ++j) // TODO: case when dimensions.size = 0
{
if ((*dataPtr)[nCols * idx + j])
dimensions.push_back(j);
}
const size_t nonZero = dimensions.size();
if (!nonZero)
std::runtime_error("dimensions are null");
TablePtr<T> R(new Table<T>(nonZero, 1));
for (size_t j = 0u; j < nonZero; ++j)
{
(*R)[j] = (*dataPtr)[nCols * idx + dimensions[j]];
}
TablePtr<T> subMatrix(new Table<T>(this->_nFactors, nonZero));
for (size_t i = 0u; i < this->_nFactors; ++i)
for (size_t j = 0u; j < nonZero; ++j)
{
(*subMatrix)[i * nonZero + j] = (*factors)[i * nCols + dimensions[j]];
}
return std::pair<TablePtr<T>, TablePtr<T>>(subMatrix, R);
}
} //als