-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
414 lines (363 loc) · 19.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
# --------------------------------------------------------
# ALPS
# Copyright (c)
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import argparse
import numpy as np
import torch
import matplotlib.pyplot as plt
import cv2
import sys
import os
import glob
import json
import gc
sys.path.append("..")
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor
import torchvision
from torchvision import models
from torch.utils.data import Dataset, DataLoader
import torch.nn.functional as F
from torchvision import transforms as T
from sklearn import datasets
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import MiniBatchKMeans
from sklearn.decomposition import PCA
import joblib
from sam_vit import ImageEncoderViT
from functools import partial
import time
import datetime
import os
import os.path as osp
from utils.logger import create_logger
from utils.utils import save_anns, filter_masks, write_masks_to_folder, create_color_mapping, add_mask_to_template, add_gt_seg_mask_to_template
from utils.model import build_sam_vit
from utils.dataset import Custom_Dataset, Mask_Vec_Dataset, Mask_Vec_TestDataset
# GPU Selection
os.environ['CUDA_VISIBLE_DEVICES']="0"
# Strict Requirement!!!
"""
Dataset Structure
├── img_dir
│ ├── train
│ │ ├── xxx{img_suffix}
│ │ ├── yyy{img_suffix}
│ │ ├── zzz{img_suffix}
│ │ ├── ....
│ ├── val
│ │ ├── xxx{img_suffix}
│ │ ├── yyy{img_suffix}
│ │ ├── zzz{img_suffix}
│ │ ├── ....
│ ├── test
│ │ ├── xxx{img_suffix}
│ │ ├── yyy{img_suffix}
│ │ ├── zzz{img_suffix}
│ │ ├── ....
"""
# ---------Parameter Configuration---------
parser = argparse.ArgumentParser('ALPS', add_help=False)
## Modification Necessarily
### Normal Configuration
parser.add_argument('--root_dir', default="",type=str, metavar="FILE", help='path to the dataset dir', )
parser.add_argument('--process_list', type=list, default=['train', 'val'], choices=['train', 'val', 'test'])
parser.add_argument('--img_name', type=str, default='img_dir', help='img name')
parser.add_argument('--threshold', type=float, default=0.3, help='the threshold value to filter the useless masks')
parser.add_argument('--label_dir', type=str, default="instance_mask", help='path to the final pseudo masks obtained by SAM and K-Means')
parser.add_argument('--logger_dir', type=str, default="logs", help='path to log dir')
parser.add_argument('--logger_name', type=str, default="Test", help='log name')
parser.add_argument('--temp_dir', type=str, default='temporary_files', help='path to save the temporary files')
parser.add_argument('--image_suffix', type=str, default='.png', help='the suffix of data source, e.g., .png \ .jpg ...')
parser.add_argument('--delete_temp', type=bool, default=False, choices=[True, False], help='if True the program will delete the tempoary files generated by this script !')
### SAM Configuration
parser.add_argument('--sam_checkpoint', default="",type=str, help='checkpoint path to the sam pre-trained model', )
parser.add_argument('--model_type', type=str, default='vit_h', choices=['vit_b', 'vit_l', 'vit_h'])
parser.add_argument('--device', type=str, default='cuda', choices=['cuda', 'cpu'])
### Online K-Means
parser.add_argument('--number_clusters', type=int, default=46, help='the number of clustering classes')
parser.add_argument('--batch_size', type=int, default=512, help='the batch size adopted in Online K-means')
parser.add_argument('--kmeans_save_name', type=str, default='k_means.pkl', help='model save name of online k-means')
### Visualization
parser.add_argument('--vis', type=bool, default=False, choices=[True, False], help='if True the program will meanwhile save the visualization pseudo masks, which will occupy more storages!')
parser.add_argument('--vis_dir', type=str, default="vis_mask", help='path to the visualization instance masks')
parser.add_argument('--vis_prefix', type=str, default='instance_vis', help='the suffix of saving pseudo label masks')
## Modification Unnecessarily!!! These are temporary files.
parser.add_argument('--mask_save_dir_name', type=str, default='test_mask', help='the temporary file to save the masks generated by SAM')
parser.add_argument('--mask_save_dir_prefix', type=str, default='all_mask', help='the prefix name of each mask saving dir')
parser.add_argument('--json_save_dir_name', type=str, default='mask_vec', help='the feature vector of masks to save as a json file')
parser.add_argument('--npy_save_dir_name', type=str, default='mask_vec_npy', help='the feature vector of masks to save as a npy file')
parser.add_argument('--instance_label_name', type=str, default='mask2instance', help='the dict of mask to instance label')
parser.add_argument('--instance_save_dir_name', type=str, default='instance_dir', help='the path to save the dict')
parser.add_argument('--instance_path', type=str, default='instance_mask_visualization', help='visualizaiton instance label name')
parser.add_argument('--instance_prefix', type=str, default='instance_color', help='the suffix of saving pseudo label masks')
args = parser.parse_args()
# Logger
os.makedirs(osp.join(args.root_dir, args.logger_dir), exist_ok=True)
logger = create_logger(output_dir=osp.join(args.root_dir, args.logger_dir), name=args.logger_name)
# Step 1
def generate_all_masks():
mask_save_dir_name = osp.join(args.root_dir, args.temp_dir, args.mask_save_dir_name)
dataset_path = osp.join(args.root_dir, args.img_name)
# mk dir
os.makedirs(mask_save_dir_name, exist_ok=True)
for item in args.process_list:
save_path_dir = os.path.join(mask_save_dir_name, item)
os.makedirs(save_path_dir, exist_ok=True)
logger.info('Saving dir create finished!')
# create sam
sam = sam_model_registry[args.model_type](checkpoint=args.sam_checkpoint)
sam.to(device=args.device)
mask_generator = SamAutomaticMaskGenerator(sam)
logger.info('SAM Model Loaded!')
# load image name
for item in args.process_list:
path = os.path.join(dataset_path, item)
img_list = glob.glob(os.path.join(path, '*'+args.image_suffix))
for img in img_list:
# P0000_0_896_0_896
img_name = img.split('/')[-1].split('.')[0] # obtain img name
# mk masks save dir for each img
# logger.info(img_name)
all_mask_dir_name = img_name + '_' + args.mask_save_dir_prefix
all_mask_dir_path = os.path.join(mask_save_dir_name, item, all_mask_dir_name)
os.makedirs(all_mask_dir_path, exist_ok=True)
# load image
img_path = os.path.join(dataset_path, img)
image = cv2.imread(img_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Generate Mask
masks = mask_generator.generate(image)
# mask save path
write_masks_to_folder(image, masks, all_mask_dir_path, args.image_suffix, args.threshold)
logger.info('Save all masks of '+ str(img_name) +' as ' + all_mask_dir_path + ' successed !')
del image
del masks
gc.collect()
logger.info('Job finished!')
# Step 2
def use_encoder_align_mask_feature():
logger.info(f'Creating the {args.model_type} ...')
model = build_sam_vit(args.model_type)
with open(args.sam_checkpoint, "rb") as f:
state_dict = torch.load(f)
if any([True if 'image_encoder.' in k else False for k in state_dict.keys()]):
state_dict = {k.replace('image_encoder.', ''): v for k, v in state_dict.items() if k.startswith('image_encoder.')}
model.load_state_dict(state_dict)
logger.info(f'Loading ViT encoder~({args.model_type}) of SAM From {args.sam_checkpoint}...')
# put it on cuda
# if torch.cuda.is_available():
# model = model.cuda()
model.to(device=args.device)
model.eval()
dataset_path = osp.join(args.root_dir, args.img_name)
mask_save_dir_name = osp.join(args.root_dir, args.temp_dir, args.mask_save_dir_name)
for item in args.process_list:
# dataset
test_dataset = Custom_Dataset(root_dir=os.path.join(dataset_path, item), mask_dir=os.path.join(mask_save_dir_name, item), dataset_path=dataset_path, prefix=args.mask_save_dir_prefix, image_suffix=args.image_suffix)
test_dataloader = DataLoader(dataset=test_dataset, batch_size=1)
# json dict save path
json_mask_avg_vec_save_path = os.path.join(args.root_dir, args.temp_dir, args.json_save_dir_name, item)
os.makedirs(json_mask_avg_vec_save_path, exist_ok=True)
# npy save dir
mask_vec_npy_dir = os.path.join(args.root_dir, args.temp_dir, args.npy_save_dir_name, item)
os.makedirs(mask_vec_npy_dir, exist_ok=True)
# inference
with torch.no_grad():
for idx, item in enumerate(test_dataloader):
img_info = dict() # the image information saving dict
image_name = item['image_name'][0]
image = item['image']
masks = item['masks']
if args.device == 'cuda':
image = image.cuda()
# image.to(device=args.device)
# print(image.shape)
features = model(image) # [B, C, H, W]
# print(features.shape)
b, c, h, w = features.shape
masked_feature_list = dict()
for item in masks:
mask_name = item['mask_name'][0]
mask = item['mask']
# print(mask[mask!=0])
if args.device == 'cuda':
mask = mask.cuda()
# mask.to(device=args.device)
# upsampling features and downsample masks
# print(mask.shape)
rescale_factor = 4 # 4x upsample / down sample
t1, t2 = int(mask.shape[2] / rescale_factor), int(mask.shape[3] / rescale_factor)
features_rescale = F.interpolate(features, size=[t1, t2], mode='bilinear')
mask_rescale = F.interpolate(mask, size=[t1, t2], mode='bilinear')
# print('mask_rescale:'+str(torch.count_nonzero(mask_rescale.view(1, 1, -1), dim=2).sum()))
masked_feature = torch.mul(features_rescale, mask_rescale)
masked_feature = masked_feature.view(b, c, -1)
non_zero_count = torch.count_nonzero(masked_feature, dim=2)
# calculate h×w avg vec
masked_avg_vec = masked_feature.sum(dim=2) / non_zero_count # 加和之后求均值
# 将tensor中的nan替换为0
masked_avg_vec[torch.isnan(masked_avg_vec)] = 0
npy_data = masked_avg_vec.detach().cpu().numpy()
single_mask_vec_path = os.path.join(mask_vec_npy_dir, image_name+'_'+mask_name+'.npy')
np.save(single_mask_vec_path, npy_data)
masked_feature_list[mask_name] = single_mask_vec_path
del npy_data
del masked_avg_vec
del features_rescale
del masked_feature
img_info['image_name'] = image_name
img_info['mask_avg_vec'] = masked_feature_list # all masks for each image saving dict
# save json dict
json_save_name = os.path.join(json_mask_avg_vec_save_path, image_name+'_mask_vec.json')
with open(json_save_name, "w") as file:
json.dump(img_info, file)
logger.info(f'Saving image: {image_name} all masks as {json_save_name}.')
del test_dataloader
del test_dataset
gc.collect()
# Step 3
# Training mini batch(online) K-meas for self-constructed dataset
"""
rm -rf k_means.pkl
"""
def online_k_means_clustering_train():
# create K-means
kmeans = MiniBatchKMeans(n_clusters=args.number_clusters, random_state=0, batch_size=args.batch_size, n_init="auto")
for item in args.process_list:
# load all mask vecs
# json_mask_avg_vec_save_path = os.path.join(root_dir, json_save_dir_name, item)
# all_mask_vec_path = os.path.join(json_mask_avg_vec_save_path, 'all_mask_vec.npy')
train_dataset = Mask_Vec_Dataset(root_dir=osp.join(args.root_dir, args.temp_dir), json_dir=args.json_save_dir_name, item_dir=item)
train_dataloader = DataLoader(dataset=train_dataset, batch_size=args.batch_size, drop_last=False)
for idx, item in enumerate(train_dataloader):
item = np.squeeze(item, 1) # [B, 2048]
kmeans = kmeans.partial_fit(item)
save_path = os.path.join(args.root_dir, args.kmeans_save_name)
joblib.dump(kmeans, save_path)
logger.info(f'Saving pretrained k-means model as {save_path}...')
# logger.info(kmeans.cluster_centers_)
# Step 4
# Prediction + save instance label sets to json for each mask by online k-means model
def online_k_means_clustering_test():
save_path = os.path.join(args.root_dir, args.kmeans_save_name)
kmeans = joblib.load(save_path)
logger.info(f'Loaded pretrained k-means model from {save_path}...')
logger.info('kmeans cluster centers:' + str(kmeans.cluster_centers_))
for item in args.process_list:
# json dict save path
instance_mask_avg_vec_save_path = os.path.join(args.root_dir, args.temp_dir, args.instance_save_dir_name, item)
os.makedirs(instance_mask_avg_vec_save_path, exist_ok=True)
# dataset
test_dataset = Mask_Vec_TestDataset(root_dir=osp.join(args.root_dir, args.temp_dir), json_dir=args.json_save_dir_name, item_dir=item)
test_dataloader = DataLoader(dataset=test_dataset, batch_size=args.batch_size, drop_last=False)
# print(len(test_dataset))
# test
image_instance_dict = dict()
for idx, item in enumerate(test_dataloader):
# print(item["mask_vec"].shape)
# print(type(item["image_name"])) # list
mask_vec = np.squeeze(item["mask_vec"], 1)
image_name = item["image_name"]
mask_name = item["mask_name"]
predicts = kmeans.predict(mask_vec) # list
for idx, key in enumerate(image_name):
mask_id = mask_name[idx]
pred = predicts[idx]
if key in image_instance_dict.keys():
image_instance_dict[key][mask_id] = int(pred)
else:
image_instance_dict[key] = dict()
image_instance_dict[key][mask_id] = int(pred)
json_save_name = os.path.join(instance_mask_avg_vec_save_path, args.instance_label_name +'.json')
with open(json_save_name, "w") as file:
json.dump(image_instance_dict, file)
logger.info(f'Saving mask instance label sets as {json_save_name}...')
# Step 5
# Generate instance mask for training based on above obtained temporary data
def generate_gt_instance_mask():
# If need Visualization, obtaining the color map
if args.vis:
color_map = create_color_mapping()
instance_seg_vis_path = args.vis_dir
instance_seg_gt_path = args.label_dir
mask_save_dir_name = osp.join(args.root_dir, args.temp_dir, args.mask_save_dir_name)
for item in args.process_list:
# create instance label mask dir
instance_mask_save_path = os.path.join(args.root_dir, instance_seg_gt_path, item)
os.makedirs(instance_mask_save_path, exist_ok=True)
# create visualization save dir
if args.vis:
visual_mask_save_path = os.path.join(args.root_dir, instance_seg_vis_path, item)
os.makedirs(visual_mask_save_path, exist_ok=True)
# load mask2instance.json
instance_mask_avg_vec_save_path = os.path.join(args.root_dir, args.temp_dir, args.instance_save_dir_name, item)
json_path = os.path.join(instance_mask_avg_vec_save_path, args.instance_label_name+'.json')
with open(json_path,'r', encoding='UTF-8') as f:
data = json.load(f)
# create instance map
for image_name in data.keys():
mask2instance_dict = data[image_name]
mask_dir = os.path.join(mask_save_dir_name, item, image_name+'_'+args.mask_save_dir_prefix)
template_save_path = os.path.join(instance_mask_save_path, image_name+'_'+args.instance_prefix+args.image_suffix)
# skip already generated files
if os.path.exists(template_save_path):
print(f"{template_save_path} is existed!")
continue
template = None
vis_template = None
idx = 0
for mask_name in mask2instance_dict.keys():
instance_label = mask2instance_dict[mask_name]
# obtain color value
if args.vis:
color_value = color_map[instance_label]
mask_path = os.path.join(mask_dir, mask_name+args.image_suffix)
mask = np.array(cv2.imread(mask_path, 0)) / 255.0
if idx == 0:
# generate specific-visualization template
if args.vis:
vis_template = np.zeros((mask.shape[0], mask.shape[1], 3))
# generate normal template for training
template = np.zeros((mask.shape[0], mask.shape[1], 1)) # shape要为2D!
# print(template.shape)
idx += 1
# 叠加mask
template = add_gt_seg_mask_to_template(mask, template, int(instance_label))
if args.vis:
vis_template = add_mask_to_template(mask, vis_template, color_value)
# save template
template_save_path = os.path.join(instance_mask_save_path, image_name+'_'+args.instance_prefix+args.image_suffix)
cv2.imwrite(template_save_path, template)
logger.info(f'Saving instance mask as {template_save_path}...')
# save visual template
if args.vis:
vis_template_save_path = os.path.join(visual_mask_save_path, image_name+'_'+args.vis_prefix+args.image_suffix)
cv2.imwrite(vis_template_save_path, vis_template)
logger.info(f'Saving visual mask as {vis_template_save_path}...')
# main function
def main():
logger.info(f"Time: {datetime.datetime.now()}, Script Staring ...")
# Step 1:
logger.info(f"Time: {datetime.datetime.now()}, Step 1: predict the mask of each image by SAM")
generate_all_masks()
# Step 2:
logger.info(f"Time: {datetime.datetime.now()}, Step 2: use encoder of SAM to extract feature of the img and align the feature for each mask")
use_encoder_align_mask_feature()
# Step 3:
logger.info(f"Time: {datetime.datetime.now()}, Step 3: Training online K-means based on the feature vectors of each mask")
online_k_means_clustering_train()
# Step 4:
logger.info(f"Time: {datetime.datetime.now()}, Step 4: Predicting the class of each mask by pre-trained online K-means model")
online_k_means_clustering_test()
# Step 5:
logger.info(f"Time: {datetime.datetime.now()}, Step 5: Generating the instance mask based on above temporary data")
generate_gt_instance_mask()
# # Step 6:
if args.delete_temp:
logger.info(f"Time: {datetime.datetime.now()}, Step 6: Deleting the tempoary files ......")
cmd = 'rm -rf '+ osp.join(args.root_dir, args.temp_dir)
os.system(cmd)
logger.info(f"Time: {datetime.datetime.now()}, Delete Finished!!!")
main()