-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwhisper_asr.py
88 lines (78 loc) · 3.35 KB
/
whisper_asr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import numpy as np
import time
import whisperx
from scipy.signal import resample
import time
import os
import time
class WhisperAutomaticSpeechRecognizer:
device = "cuda"
compute_type = "int8" # change to if more gpu memory available
batch_size = 4
model = whisperx.load_model(
"medium", device, language="en", compute_type=compute_type
)
diarize_model = whisperx.DiarizationPipeline(
use_auth_token=os.environ.get('HF_TOKEN'), device="cuda"
)
existing_speaker = None
@staticmethod
def downsample_audio_scipy(audio: np.ndarray, original_rate, target_rate=16000):
if original_rate == target_rate:
return audio
# Check if audio has one channel
if len(audio.shape) != 1:
raise ValueError("Input audio must have only one channel.")
# Calculate the number of samples in the downsampled audio
num_samples = int(len(audio) * target_rate / original_rate)
downsampled_audio = resample(audio, num_samples)
return downsampled_audio
@staticmethod
def transcribe_with_diarization_file(filepath: str):
audio = whisperx.load_audio(filepath, 16000)
return WhisperAutomaticSpeechRecognizer.transcribe_with_diarization(
(16000, audio), None, "", False
)
@staticmethod
def transcribe_with_diarization(
stream, full_stream, full_transcript, streaming=True
):
start_time = time.time()
sr, y = stream
if streaming:
sr, y = stream
y = WhisperAutomaticSpeechRecognizer.downsample_audio_scipy(y, sr)
y = y.astype(np.float32)
y /= 32768.0
if full_transcript is None:
full_transcript = ""
transcribe_result = WhisperAutomaticSpeechRecognizer.model.transcribe(
y, batch_size=WhisperAutomaticSpeechRecognizer.batch_size
)
diarize_segments = WhisperAutomaticSpeechRecognizer.diarize_model(y)
diarize_result = whisperx.assign_word_speakers(
diarize_segments, transcribe_result
)
new_transcript = ""
for segment in diarize_result["segments"]:
current_speaker = ""
default_first_speaker = "SPEAKER_00"
try:
current_speaker = segment["speaker"]
except KeyError:
current_speaker = default_first_speaker
if WhisperAutomaticSpeechRecognizer.existing_speaker == None:
try:
WhisperAutomaticSpeechRecognizer.existing_speaker = current_speaker
except KeyError:
WhisperAutomaticSpeechRecognizer.existing_speaker = default_first_speaker
new_transcript += f"\n {WhisperAutomaticSpeechRecognizer.existing_speaker} - "
if current_speaker != WhisperAutomaticSpeechRecognizer.existing_speaker and current_speaker is not default_first_speaker:
WhisperAutomaticSpeechRecognizer.existing_speaker = current_speaker
new_transcript += f"\n {WhisperAutomaticSpeechRecognizer.existing_speaker} - "
new_transcript = new_transcript + segment["text"]
full_transcript = full_transcript + new_transcript
end_time = time.time()
if streaming:
time.sleep(5 - (end_time - start_time))
return full_transcript, stream, full_transcript