forked from yalaorg/BitcoinRisk
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathModeling.py
241 lines (203 loc) · 9.98 KB
/
Modeling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import pandas as pd
import numpy as np
from scipy.stats import norm
import matplotlib.pyplot as plt
from datetime import datetime, timedelta
import requests
import json
class CryptoRiskManagementModel:
def __init__(self, lookback_years=7, confidence_level=0.99,
max_drawdown_threshold=-0.20, # Adjusted for crypto volatility
min_liquidity_ratio=2.0, # Increased for crypto
margin_call_threshold=0.75): # More conservative for crypto
"""
Initialize risk management model with crypto-specific parameters
Parameters:
- lookback_years: Historical data period for model training
- confidence_level: VaR confidence level
- max_drawdown_threshold: Maximum allowed drawdown
- min_liquidity_ratio: Minimum required liquidity ratio
- margin_call_threshold: Threshold for margin calls
"""
self.lookback_years = lookback_years
self.confidence_level = confidence_level
self.max_drawdown_threshold = max_drawdown_threshold
self.min_liquidity_ratio = min_liquidity_ratio
self.margin_call_threshold = margin_call_threshold
# Crypto-specific parameters
self.btc_volatility_multiplier = 1.5 # Additional safety factor for BTC
self.max_leverage = 5.0 # Maximum allowed leverage
self.min_collateral_btc = 0.1 # Minimum BTC collateral
# Model state variables
self.historical_data = self.load_bitcoin_history()
self.var_model = None
self.volatility_model = None
def load_bitcoin_history(self):
"""Load historical Bitcoin price data"""
# Example of loading historical data - in practice, you'd fetch from an API
# This simulates 7 years of daily data
dates = pd.date_range(end=datetime.now(), periods=365*7, freq='D')
np.random.seed(42) # For reproducibility
# Simulate Bitcoin's historical volatility and trend
returns = np.random.normal(0.0005, 0.03, len(dates)) # Daily returns
price = 1000 * np.exp(np.cumsum(returns)) # Starting from $1000
return pd.DataFrame({
'price': price,
'volume': np.random.lognormal(10, 1, len(dates)),
'returns': returns
}, index=dates)
def calculate_crypto_var(self, portfolio_value, btc_position):
"""Calculate Value at Risk specifically for crypto positions"""
returns = self.historical_data['returns'].dropna()
# Use longer left tail for crypto VaR
var = np.percentile(returns, (1 - self.confidence_level) * 100) * self.btc_volatility_multiplier
return portfolio_value * var
def calculate_margin_requirements(self, btc_position_value, current_volatility):
"""Calculate required margin based on BTC position value and current volatility"""
# Higher base margin for crypto
base_margin = btc_position_value * 0.2
volatility_adjustment = current_volatility * btc_position_value * self.btc_volatility_multiplier
# Ensure margin doesn't exceed position value
return min(base_margin + volatility_adjustment, btc_position_value)
def check_liquidation_risk(self, account_value, margin_used,
available_credit, time_to_repay,
current_btc_price):
"""
Check if BTC position faces liquidation risk
Returns: (risk_level, required_action)
"""
liquidity_ratio = (account_value + available_credit) / margin_used
# Calculate additional metrics for crypto
leverage = margin_used / account_value
btc_exposure = margin_used / current_btc_price
if leverage > self.max_leverage:
return "CRITICAL", "Leverage exceeds maximum allowed"
if liquidity_ratio < self.margin_call_threshold:
if time_to_repay > 2: # More than 2 days to repay
return "HIGH", f"Margin call issued - {time_to_repay:.1f} days to repay"
else:
return "CRITICAL", "Immediate liquidation risk - add collateral"
elif liquidity_ratio < self.min_liquidity_ratio:
return "MEDIUM", "Increase collateral or reduce exposure"
return "LOW", "Position within risk limits"
def backtest_strategy(self, initial_capital, btc_position, start_date, end_date):
"""
Backtest risk management strategy with Bitcoin positions
Returns performance metrics and risk events
"""
portfolio = pd.DataFrame(index=self.historical_data.loc[start_date:end_date].index)
portfolio['value'] = initial_capital
portfolio['btc_exposure'] = btc_position
risk_events = []
for date in portfolio.index[1:]:
# Daily mark-to-market
btc_return = self.historical_data.loc[date, 'returns']
portfolio_return = btc_return * (portfolio.loc[date-1, 'btc_exposure'])
portfolio.loc[date, 'value'] = portfolio.loc[date-1, 'value'] * (1 + portfolio_return)
# Check for risk events
drawdown = (portfolio.loc[date, 'value'] - initial_capital) / initial_capital
if drawdown < self.max_drawdown_threshold:
risk_events.append({
'date': date,
'type': 'Max Drawdown Exceeded',
'value': drawdown
})
return {
'final_value': portfolio.iloc[-1]['value'],
'max_drawdown': (portfolio['value'] / portfolio['value'].cummax() - 1).min(),
'sharpe_ratio': portfolio['value'].pct_change().mean() /
portfolio['value'].pct_change().std() * np.sqrt(252),
'risk_events': risk_events
}
def get_repayment_schedule(self, margin_call_amount, account_value,
daily_income, max_days=5):
"""Calculate optimal repayment schedule to avoid liquidation"""
# More conservative repayment schedule for crypto
available_daily = daily_income * 0.6 # Reduced from 0.7 for additional safety
min_days_required = np.ceil(margin_call_amount / available_daily)
if min_days_required > max_days:
return None # Cannot generate viable repayment schedule
# Add buffer for crypto volatility
buffer_amount = margin_call_amount * 0.1
return {
'daily_payment': (margin_call_amount + buffer_amount) / min_days_required,
'days_required': min_days_required,
'total_amount': margin_call_amount + buffer_amount,
'buffer_included': buffer_amount
}
def stress_test_crypto(self, btc_position, scenarios):
"""Run stress tests under different crypto market scenarios"""
results = []
current_price = self.historical_data['price'].iloc[-1]
for scenario in scenarios:
price_shock = scenario['price_shock']
vol_shock = scenario.get('volatility_shock', 0)
shocked_value = btc_position * (1 + price_shock)
shocked_volatility = self.historical_data['returns'].std() * (1 + vol_shock)
margin_call_prob = self.estimate_margin_call_probability(
shocked_value, shocked_volatility)
results.append({
'scenario': scenario['name'],
'portfolio_impact': (shocked_value - btc_position) / btc_position,
'margin_call_probability': margin_call_prob,
'required_additional_margin': self.calculate_margin_requirements(
shocked_value, shocked_volatility) - btc_position
})
return results
def estimate_margin_call_probability(self, position_value, current_volatility):
"""Estimate probability of margin call under current conditions"""
# Adjusted for crypto's fat-tailed distribution
var_99 = self.calculate_crypto_var(position_value, position_value)
return norm.cdf(-self.margin_call_threshold,
loc=position_value * current_volatility * np.sqrt(252),
scale=abs(var_99))
def main():
# Initialize model with crypto-specific parameters
model = CryptoRiskManagementModel(
lookback_years=7,
confidence_level=0.99,
max_drawdown_threshold=-0.20,
min_liquidity_ratio=2.0,
margin_call_threshold=0.75
)
# Example usage with Bitcoin position
btc_position = 10.0 # BTC
current_btc_price = 42000 # USD
position_value = btc_position * current_btc_price
# Run crypto-specific stress tests
scenarios = [
{
'name': 'Major Crash',
'price_shock': -0.40,
'volatility_shock': 2.0
},
{
'name': 'Moderate Correction',
'price_shock': -0.20,
'volatility_shock': 1.5
},
{
'name': 'Bull Run',
'price_shock': 0.30,
'volatility_shock': 1.0
}
]
stress_test_results = model.stress_test_crypto(position_value, scenarios)
# Check liquidation risk
risk_level, action = model.check_liquidation_risk(
account_value=position_value,
margin_used=position_value * 0.5, # 50% margin used
available_credit=position_value * 0.2,
time_to_repay=3,
current_btc_price=current_btc_price
)
# Calculate repayment schedule if needed
if risk_level in ['HIGH', 'CRITICAL']:
repayment_schedule = model.get_repayment_schedule(
margin_call_amount=position_value * 0.1, # 10% margin call
account_value=position_value,
daily_income=position_value * 0.02 # Assuming 2% daily income
)
print(f"Repayment Schedule: {repayment_schedule}")
if __name__ == "__main__":
main()