-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdepth_to_normal_map.py
81 lines (61 loc) · 2.74 KB
/
depth_to_normal_map.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import cv2
import numpy as np
import argparse
class DepthToNormalMap:
"""A class for converting a depth map image to a normal map image.
Attributes:
depth_map (ndarray): A numpy array representing the depth map image.
max_depth (int): The maximum depth value in the depth map image.
"""
def __init__(self, depth_map_path: str, max_depth: int = 255) -> None:
"""Constructs a DepthToNormalMap object.
Args:
depth_map_path (str): The path to the depth map image file.
max_depth (int, optional): The maximum depth value in the depth map image.
Defaults to 255.
Raises:
ValueError: If the depth map image file cannot be read.
"""
self.depth_map = cv2.imread(depth_map_path, cv2.IMREAD_UNCHANGED)
if self.depth_map is None:
raise ValueError(
f"Could not read the depth map image file at {depth_map_path}"
)
self.max_depth = max_depth
def convert(self, output_path: str) -> None:
"""Converts the depth map image to a normal map image.
Args:
output_path (str): The path to save the normal map image file.
"""
rows, cols = self.depth_map.shape
x, y = np.meshgrid(np.arange(cols), np.arange(rows))
x = x.astype(np.float32)
y = y.astype(np.float32)
# Calculate the partial derivatives of depth with respect to x and y
dx = cv2.Sobel(self.depth_map, cv2.CV_32F, 1, 0)
dy = cv2.Sobel(self.depth_map, cv2.CV_32F, 0, 1)
# Compute the normal vector for each pixel
normal = np.dstack((-dx, -dy, np.ones((rows, cols))))
norm = np.sqrt(np.sum(normal**2, axis=2, keepdims=True))
normal = np.divide(normal, norm, out=np.zeros_like(normal), where=norm != 0)
# Map the normal vectors to the [0, 255] range and convert to uint8
normal = (normal + 1) * 127.5
normal = normal.clip(0, 255).astype(np.uint8)
# Save the normal map to a file
normal_bgr = cv2.cvtColor(normal, cv2.COLOR_RGB2BGR)
cv2.imwrite(output_path, normal_bgr)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Convert depth map to normal map")
parser.add_argument("--input", type=str, help="Path to depth map image")
parser.add_argument(
"--max_depth", type=int, default=255, help="Maximum depth value (default: 255)"
)
parser.add_argument(
"--output_path",
type=str,
default="normal_map.png",
help="Output path for normal map image (default: normal_map.png)",
)
args = parser.parse_args()
converter = DepthToNormalMap(args.input, max_depth=args.max_depth)
converter.convert(args.output_path)