-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaesthetic_nodes.py
155 lines (137 loc) · 4.44 KB
/
aesthetic_nodes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from PIL import Image
from os.path import join
import ImageReward as RM
import clip
import datetime
import folder_paths
import io
import json
import math
import numpy as np
import os
import pytorch_lightning as pl
import re
import socket
import statistics
import sys
import time
import torch
import torch.nn as nn
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
import comfy.sd
import comfy.utils
# Aesthetic Scoring Node
folder_paths.folder_names_and_paths["aesthetic"] = ([os.path.join(folder_paths.models_dir,"aesthetic")], folder_paths.supported_pt_extensions)
class MLP(pl.LightningModule):
def __init__(self, input_size, xcol='emb', ycol='avg_rating'):
super().__init__()
self.input_size = input_size
self.xcol = xcol
self.ycol = ycol
self.layers = nn.Sequential(
nn.Linear(self.input_size, 1024),
#nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(1024, 128),
#nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(128, 64),
#nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(64, 16),
#nn.ReLU(),
nn.Linear(16, 1)
)
def forward(self, x):
return self.layers(x)
def training_step(self, batch, batch_idx):
x = batch[self.xcol]
y = batch[self.ycol].reshape(-1, 1)
x_hat = self.layers(x)
loss = F.mse_loss(x_hat, y)
return loss
def validation_step(self, batch, batch_idx):
x = batch[self.xcol]
y = batch[self.ycol].reshape(-1, 1)
x_hat = self.layers(x)
loss = F.mse_loss(x_hat, y)
return loss
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
return optimizer
def normalized(a, axis=-1, order=2):
import numpy as np # pylint: disable=import-outside-toplevel
l2 = np.atleast_1d(np.linalg.norm(a, order, axis))
l2[l2 == 0] = 1
return a / np.expand_dims(l2, axis)
class AestheticNode_Scoring:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"model_name": (folder_paths.get_filename_list("aesthetic"), {"multiline": False, "default": "chadscorer.pth"}),
"image": ("IMAGE",),
}
}
RETURN_TYPES = ("NUMBER","IMAGE")
FUNCTION = "calc_score"
CATEGORY = "Scoring"
def calc_score(self, model_name, image):
m_path = folder_paths.folder_names_and_paths["aesthetic"][0]
m_path2 = os.path.join(m_path[0], model_name)
model = MLP(768) # CLIP embedding dim is 768 for CLIP ViT L 14
s = torch.load(m_path2, map_location=torch.device('cpu'))
model.load_state_dict(s)
# model.to("cuda")
model.eval()
device = "cpu"
model2, preprocess = clip.load("ViT-L/14", device=device) # RN50x64
tensor_image = image[0]
img = (tensor_image * 255).to(torch.uint8).numpy()
pil_image = Image.fromarray(img, mode='RGB')
image2 = preprocess(pil_image).unsqueeze(0).to(device)
with torch.no_grad():
image_features = model2.encode_image(image2)
im_emb_arr = normalized(image_features.detach().numpy())
prediction = model(torch.from_numpy(im_emb_arr).to(torch.device("cpu")).type(torch.FloatTensor))
final_prediction = round(float(prediction[0]), 2)
del model
return (final_prediction,)
# Image Reward Scoring Node
class AestheticNode_ImageReward:
def __init__(self):
self.model = None
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"model": ("STRING", {"multiline": False, "default": "ImageReward-v1.0"}),
"prompt": ("STRING", {"multiline": True, "forceInput": True}),
"images": ("IMAGE",),
},
}
RETURN_TYPES = ("FLOAT", "STRING", "FLOAT", "STRING")
RETURN_NAMES = ("SCORE_FLOAT", "SCORE_STRING", "VALUE_FLOAT", "VALUE_STRING")
CATEGORY = "Scoring"
FUNCTION = "process_images"
def process_images(self, model, prompt, images,): #rounded):
if self.model is None:
self.model = RM.load(model)
score = 0.0
for image in images:
# convert to PIL image
i = 255.0 * image.cpu().numpy()
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
score += self.model.score(prompt, [img])
score /= len(images)
# assume std dev follows normal distribution curve
valuescale = 0.5 * (1 + math.erf(score / math.sqrt(2))) * 10 # *10 to get a value between -10
return (score, str(score), valuescale, str(valuescale))
# CREDITS
#----------------------------------------------
# Endless Sea of Stars Custom Node Collection
# https://github.com/tusharbhutt/Endless-Nodes
#----------------------------------------------
#