-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvideo_processing.py
128 lines (104 loc) · 3.91 KB
/
video_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import cv2
from PIL import Image
import numpy as np
from moviepy.editor import ImageSequenceClip
def get_video_dimensions(video_path):
cap = cv2.VideoCapture(video_path)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
cap.release()
aspect_ratio = width / height
return (width, height), aspect_ratio
def calculate_new_dimensions(dimensions, aspect_ratio):
width, height = dimensions
if aspect_ratio > 1: # Landscape
new_height = int(width / aspect_ratio)
new_dimensions = (width, new_height)
elif aspect_ratio < 1: # Portrait
new_width = int(height * aspect_ratio)
new_dimensions = (new_width, height)
else: # Square
new_dimensions = dimensions
return new_dimensions
def create_blurred_background(video_path, dimensions):
cap = cv2.VideoCapture(video_path)
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter('temp_background.mp4', fourcc, 30, dimensions)
while True:
ret, frame = cap.read()
if not ret:
break
# Resizing and blurring
frame = cv2.resize(frame, dimensions)
frame = cv2.GaussianBlur(frame, (21, 21), 0)
out.write(frame)
cap.release()
out.release()
return 'temp_background.mp4'
def overlay_video_on_background(video_path, background_path, output_path, dimensions):
cap = cv2.VideoCapture(video_path)
cap_bg = cv2.VideoCapture(background_path)
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, 30, dimensions)
while True:
ret, frame = cap.read()
ret_bg, frame_bg = cap_bg.read()
if not ret or not ret_bg:
break
# Centering the original video on the blurred background
height, width, _ = frame.shape
bg_height, bg_width, _ = frame_bg.shape
x_offset = (bg_width - width) // 2
y_offset = (bg_height - height) // 2
frame_bg[y_offset:y_offset + height, x_offset:x_offset + width] = frame
out.write(frame_bg)
cap.release()
cap_bg.release()
out.release()
def overlay_image_on_video(video_path, image_path, output_path, dimensions):
print(f"Overlaying image: {image_path} on video: {video_path}")
cap = cv2.VideoCapture(video_path)
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, 30, dimensions)
img_np = None
if image_path:
img = Image.open(image_path)
img = img.resize(dimensions)
img_np = np.array(img)
if img_np.shape[2] == 4:
img_np = img_np[:, :, :3]
while True:
ret, frame = cap.read()
if not ret:
break
frame = cv2.resize(frame, dimensions)
if image_path:
frame = cv2.addWeighted(frame, 1, img_np, 1, 0)
out.write(frame)
cap.release()
out.release()
def detect_scene_changes_and_get_clips(video_path, dimensions, fps):
cap = cv2.VideoCapture(video_path)
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
prev_frame = None
scenes = []
current_scene = []
for i in range(frame_count):
ret, frame = cap.read()
if not ret:
break
frame = cv2.resize(frame, dimensions)
if prev_frame is not None:
diff = cv2.absdiff(frame, prev_frame)
mean_diff = np.mean(diff)
if mean_diff > 30: # may need adjustment
scenes.append(current_scene)
current_scene = []
current_scene.append(frame)
prev_frame = frame
if current_scene:
scenes.append(current_scene)
cap.release()
clips = [ImageSequenceClip([cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) for frame in scene], fps=fps)
for scene in scenes]
return clips