-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathInstructorOllama.py
112 lines (92 loc) · 4.22 KB
/
InstructorOllama.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import json
import os
import importlib.util
from typing import Type
from pydantic import BaseModel
import instructor
from openai import OpenAI
from ollama import Client
from server import PromptServer # type: ignore[import]
from aiohttp import web
from textwrap import dedent
routes = PromptServer.instance.routes
@routes.post('/ollama/get_models')
async def get_models_endpoint(request):
print("Received request to get Ollama models")
data = await request.json()
url = data.get("url")
client = Client(host=url)
models = [model['name'] for model in client.list().get('models', [])]
return web.json_response(models)
class OllamaInstructorNode:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"ollama_base_url": ("STRING", {"default": "http://127.0.0.1:11434"}),
"ollama_model": ((), {}),
"user_prompt": ("STRING", {"multiline": True}),
"system_prompt": ("STRING", {"multiline": True}),
"temperature": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}),
"max_retries": ("INT", {"default": 3, "min": 1, "max": 10}),
"response_model": (cls.get_available_models(), {}),
},
}
RETURN_TYPES = ("STRING", "STRING")
RETURN_NAMES = ("Response", "Docs")
FUNCTION = "generate_structured_output"
CATEGORY = "Instructor/Ollama"
@staticmethod
def get_available_models():
models_dir = os.path.join(os.path.dirname(__file__), "models")
model_files = [f[:-3] for f in os.listdir(models_dir) if f.endswith('.py') and not f.startswith('__')]
return model_files
@staticmethod
def load_model(model_name: str) -> Type[BaseModel]:
models_dir = os.path.join(os.path.dirname(__file__), "models")
model_path = os.path.join(models_dir, f"{model_name}.py")
spec = importlib.util.spec_from_file_location(model_name, model_path)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
# Assuming the model class name is the same as the file name
return getattr(module, model_name)
def generate_structured_output(self, ollama_base_url, ollama_model, user_prompt, system_prompt, temperature, max_retries, response_model):
client = instructor.from_openai(OpenAI(api_key="ollama", base_url=f"{ollama_base_url}/v1", max_retries=max_retries), mode=instructor.Mode.JSON)
# Load the selected response model
model_class = self.load_model(response_model)
system_prompt = {
'role': 'system',
'content': system_prompt
}
user_prompt = {
'role': 'user',
'content': user_prompt
}
try:
# Generate structured output using Instructor and Ollama
response = client.chat.completions.create(
model=ollama_model,
messages=[system_prompt, user_prompt],
response_model=model_class,
temperature=temperature
)
# Convert the response to a JSON string
result = json.dumps(response.dict(), indent=2)
docs = dedent(f"""
"Instructor: https://python.useinstructor.com/",
"Pydantic: https://docs.pydantic.dev/latest/",
"Instructor Ollama Node: https://github.com/thismodernday/ComfyUI-InstructorOllama"
Pydantic models are stored in the `models` directory. Each model should be a separate Python file with a Pydantic model that inherits from `BaseModel`.
you can copy paste this path: {os.path.join(os.path.dirname(__file__), "models")} into your file browser.
""")
return (result, docs)
except Exception as e:
raise Exception(f"Failed to generate output after {max_retries} attempts: {str(e)}")
# This function is required for ComfyUI to recognize and load the custom node
NODE_CLASS_MAPPINGS = {
"OllamaInstructorNode": OllamaInstructorNode
}
# This dictionary provides human-readable names for the custom nodes
NODE_DISPLAY_NAME_MAPPINGS = {
"OllamaInstructorNode": "Ollama Instructor Node"
}