-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathdemo_9.py
142 lines (113 loc) · 4.32 KB
/
demo_9.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from matplotlib.widgets import Slider, Button
interval = 50 # ms, time between animation frames
fig, ax = plt.subplots(figsize=(6,6))
plt.subplots_adjust(left=0.15, bottom=0.35)
ax.set_aspect('equal')
plt.xlim(-1.4*40,1.4*40)
plt.ylim(-1.4*40,1.4*40)
#plt.grid()
t = np.linspace(0, 2*np.pi, 4096*2)
delta = 1
##inner pinD:
inner_pinD, = ax.plot([0],[0],'b-')
d0, = ax.plot([0],[0],'k-', lw=2)
dotD, = ax.plot([0],[0], 'bo', ms=5)
def update_inner_pinD(e,Rm, phi):
x0 = Rm*np.sin(t)
y0 = Rm*np.cos(t)
d0.set_data(x0,y0)
x = (Rm+e)*np.cos(t)-e*np.cos(phi)
y = (Rm+e)*np.sin(t)-e*np.sin(phi)
inner_pinD.set_data(x,y)
x1 = (Rm+e)*np.cos(phi+np.pi)-e*np.cos(phi)
y1 = (Rm+e)*np.sin(phi+np.pi)-e*np.sin(phi)
dotD.set_data(x1, y1)
##hypocycloidA:
hypocycloidA, = ax.plot([0],[0],'b-')
edotA, = ax.plot([0],[0], 'bo', ms=5)
def update_hypocycloidA(lamuda,e,n,D,d, phis):
#lamuda = 0.9
RD=D/2
rd=d/2
rc = (n-1)*(RD/n)
rm = (RD/n)
xa = (rc+rm)*np.cos(t)-e*lamuda*np.cos((rc+rm)/rm*t)-rd*(np.cos(t) - lamuda*np.cos((rc+rm)/rm*t))/np.sqrt(1 + lamuda**2 - 2*lamuda*np.cos(rc/rm*t))
ya = (rc+rm)*np.sin(t)-e*lamuda*np.sin((rc+rm)/rm*t)-rd*(np.sin(t) - lamuda*np.sin((rc+rm)/rm*t))/np.sqrt(1 + lamuda**2 - 2*lamuda*np.cos(rc/rm*t))
x = (xa )*np.cos(-phis/(n-1) + np.pi/(n-1))-(ya )*np.sin(-phis/(n-1) + np.pi/(n-1)) - e*np.cos(phis)
y = (xa )*np.sin(-phis/(n-1) + np.pi/(n-1))+(ya )*np.cos(-phis/(n-1) + np.pi/(n-1)) - e*np.sin(phis)
hypocycloidA.set_data(x,y)
edotA.set_data(x[0], y[0])
##hypocycloidC:
hypocycloidC, = ax.plot([0],[0],'g-')
def update_hypocycloidC(lamuda,e,n,D,d, phis):
#lamuda = 0.9
RD=D/2
rd=d/2
rc = (n)*(RD/n)
rm = (RD/n)
xa = (rc+rm)*np.cos(t)-e*lamuda*np.cos((rc+rm)/rm*t)-rd*(np.cos(t) - lamuda*np.cos((rc+rm)/rm*t))/np.sqrt(1 + lamuda**2 - 2*lamuda*np.cos(rc/rm*t))
ya = (rc+rm)*np.sin(t)-e*lamuda*np.sin((rc+rm)/rm*t)-rd*(np.sin(t) - lamuda*np.sin((rc+rm)/rm*t))/np.sqrt(1 + lamuda**2 - 2*lamuda*np.cos(rc/rm*t))
hypocycloidC.set_data(xa,ya)
axcolor = 'lightgoldenrodyellow'
ax_la = plt.axes([0.25, 0.14, 0.5, 0.015], facecolor=axcolor)
ax_fm = plt.axes([0.25, 0.12, 0.5, 0.015], facecolor=axcolor)
ax_Rm = plt.axes([0.25, 0.10, 0.5, 0.015], facecolor=axcolor)
ax_e = plt.axes([0.25, 0.08, 0.5, 0.015], facecolor=axcolor)
ax_N = plt.axes([0.25, 0.06, 0.5, 0.015], facecolor=axcolor)
ax_d = plt.axes([0.25, 0.04, 0.5, 0.015], facecolor=axcolor)
ax_D = plt.axes([0.25, 0.02, 0.5, 0.015], facecolor=axcolor)
sli_la = Slider(ax_la, 'la', 0.8, 0.98, valinit=0.90, valstep=delta/100)
sli_fm = Slider(ax_fm, 'fm', 10, 100, valinit=50, valstep=delta)
sli_Rm = Slider(ax_Rm, 'Rm', 1, 10, valinit=5, valstep=delta)
sli_e = Slider(ax_e, 'e', 0.1, 10, valinit=2.5, valstep=delta/10)
sli_N = Slider(ax_N, 'N', 3, 40, valinit=16, valstep=delta)
sli_d = Slider(ax_d, 'd', 2, 20, valinit=10,valstep=delta)
sli_D = Slider(ax_D, 'D', 5, 100, valinit=80,valstep=delta)
def update(val):
sla = sli_la.val
sfm = sli_Rm.val
sRm = sli_Rm.val
se = sli_e.val
sN = sli_N.val
sd = sli_d.val
sD = sli_D.val
ax.set_xlim(-1.4*0.5*sD,1.4*0.5*sD)
ax.set_ylim(-1.4*0.5*sD,1.4*0.5*sD)
sli_la.on_changed(update)
sli_fm.on_changed(update)
sli_Rm.on_changed(update)
sli_e.on_changed(update)
sli_N.on_changed(update)
sli_d.on_changed(update)
sli_D.on_changed(update)
resetax = plt.axes([0.85, 0.01, 0.1, 0.04])
button = Button(resetax, 'Reset', color=axcolor, hovercolor='0.975')
def reset(event):
sli_la.reset()
sli_fm.reset()
sli_Rm.reset()
sli_e.reset()
sli_N.reset()
sli_d.reset()
sli_D.reset()
button.on_clicked(reset)
def animate(frame):
sla = sli_la.val
sfm = sli_fm.val
sRm = sli_Rm.val
se = sli_e.val
sN = sli_N.val
sd = sli_d.val
sD = sli_D.val
frame = frame+1
phi = 2*np.pi*frame/sfm
update_inner_pinD(se,sRm, phi)
update_hypocycloidA(sla,se,sN,sD,sd, phi)
update_hypocycloidC(sla,se,sN,sD,sd, phi)
fig.canvas.draw_idle()
ani = animation.FuncAnimation(fig, animate,frames=sli_fm.val*(sli_N.val-1), interval=interval)
dpi=100
plt.show()