-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathModel.py
538 lines (447 loc) · 21.2 KB
/
Model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
import torch
import torch.nn as nn
import torch.nn.functional as F
import sys
import os
from tqdm import tqdm
from torch.utils.data import DataLoader
from transformers import BertModel, BertLMHeadModel, BertConfig, get_scheduler, BartModel, BartForConditionalGeneration
from Dataset import *
from FusionDecoder import FusionDecoder
from FusionEncoder import FusionEncoder
from Config import ModelConfig, TrainConfig
class Model(nn.Module):
def __init__(self, token_num, ent_num, rel_num, special_token_ids: dict, config:ModelConfig = None) -> None:
super().__init__()
self.config = config
self.ent_num = ent_num
self.rel_num = rel_num
self.token_num = token_num
self.special_token_ids = special_token_ids
if special_token_ids.get("[PAD]", None) is not None:
self.pad_id = special_token_ids.get("[PAD]", None)
if special_token_ids.get("[SOS]", None) is not None:
self.sos_id = special_token_ids.get("[SOS]", None)
if special_token_ids.get("[EOS]", None) is not None:
self.eos_id = special_token_ids.get("[EOS]", None)
if special_token_ids.get("[SEP]", None) is not None:
self.sep_id = special_token_ids.get("[SEP]", None)
if special_token_ids.get("[HIS]", None) is not None:
self.his_id = special_token_ids.get("[HIS]", None)
#Embeddings
self.ent_embedding = nn.Embedding(ent_num + 1, config.paras["ent_dim"])
self.rel_embedding = nn.Embedding(rel_num + 1, config.paras["rel_dim"])
#self.input_seg_embedding = nn.Embedding(8, config["model_dim"])
#self.doc_seg_embedding = nn.Embedding(8, config["model_dim"])
#Attention module for copy mechanism
self.tail_text_attn = nn.MultiheadAttention(embed_dim = config["model_dim"], num_heads=config["nhead"], dropout = config["drop_out"], batch_first = True)
#Basic encoder
if self.config["back_bone"] == "bart":
self.bart_c = BartForConditionalGeneration.from_pretrained(config["model_url"], cache_dir = config["pretrained_weights_cache_dir"])
self.bart = self.bart_c.model
self.pos_embedding = nn.Embedding(num_embeddings = 1024, embedding_dim = config["model_dim"])
self.doc_bart = BartForConditionalGeneration.from_pretrained(config["model_url"], cache_dir = config["pretrained_weights_cache_dir"])
self.doc_encoder = self.doc_bart.model.encoder
if self.config["back_bone"] == "bert":
self.text_encoder = BertModel.from_pretrained(config["model_url"], cache_dir = config["pretrained_weights_cache_dir"], mirror = "tuna")
elif self.config["back_bone"] == "bart":
self.text_encoder = self.bart.encoder
else:
raise f'invalid back bone type {self.config["back_bone"]}'
#Fusion Encoder
self.mix_encoder = FusionEncoder(
embedding_dim = config["model_dim"],
hidden_dim = config["hidden_dim"],
nhead = config["nhead"],
drop_out = config["drop_out"],
nlayer = config["mix_encoder_layer_num"],
graph_attn_method = config["graph_attn_method"],
use_doc_attn = config["do_doc_fusion"],
use_graph_attn = config["do_graph_fusion"]
)
#Basic decoder
if self.config["back_bone"] == "bert":
self.basic_decoder = BertLMHeadModel.from_pretrained(config["model_url"], is_decoder = True, add_cross_attention = True, cache_dir = config["pretrained_weights_cache_dir"])
elif self.config["back_bone"] == "bart":
self.basic_decoder = self.bart.decoder
#Vocabulary
self.resize_embedding(self.token_num)
#Fusion Decoder
self.mix_decoder = FusionDecoder(
embedding_dim = config["model_dim"],
hidden_dim = config["hidden_dim"],
nhead = config["nhead"],
drop_out = config["drop_out"],
nlayer = config["mix_decoder_layer_num"],
graph_attn_method = config["graph_attn_method"],
use_doc_attn = config["do_doc_fusion"],
use_graph_attn = config["do_graph_fusion"]
)
#self.tail_text_attn = nn.MultiheadAttention(embed_dim = config["model_dim"], num_heads = config["nhead"], dropout = config["drop_out"], batch_first = True)
#Linear
self.linear = nn.Linear(config.paras["model_dim"], self.token_num)
#Normalization
self.norm1 = nn.LayerNorm(config["model_dim"])
self.norm2 = nn.LayerNorm(config["model_dim"])
self.norm3 = nn.LayerNorm(config["model_dim"])
#self.norm4 = nn.LayerNorm(config["model_dim"])
#self.norm5 = nn.LayerNorm(config["model_dim"])
#dropout for text embeddings
#self.drop1 = nn.Dropout(config["drop_out"])
#self.drop2 = nn.Dropout(config["drop_out"])
#P_pointer
if self.config["do_doc_fusion"] and self.config["do_graph_fusion"]:
self.p_pointer = nn.Sequential(
nn.Linear(self.token_num, 4),
nn.Softmax(dim = -1)
)
elif self.config["do_doc_fusion"] or self.config["do_graph_fusion"]:
self.p_pointer = nn.Sequential(
nn.Linear(self.token_num, 3),
nn.Softmax(dim = -1)
)
else:
self.p_pointer = nn.Sequential(
nn.Linear(self.token_num, 2),
nn.Softmax(dim = -1)
)
def load_graph_embedding_weights(self, dir):
self.ent_embedding.load_state_dict(torch.load(os.path.join(dir, "ent_embed.pkl"), map_location = "cpu"),)
self.rel_embedding.load_state_dict(torch.load(os.path.join(dir, "rel_embed.pkl"), map_location = "cpu"))
def train_self(self, dataloader: DataLoader, config:TrainConfig):
self.train()
optimizer = torch.optim.Adam(self.parameters(), lr = config.paras["lr"])
criterion = nn.NLLLoss()
scheduler = get_scheduler(
name = 'linear',
optimizer = optimizer,
num_warmup_steps = config.paras["warm_up_steps"],
num_training_steps = config.paras["epochs"] * len(dataloader)
)
for ep in range(config.paras["epochs"]):
for i, bacth in enumerate(dataloader):
bc:Batch = bacth
bc.to(config["device"])
optimizer.zero_grad()
output = self.forward(
src = bc.inputs,
tgt = bc.reply_inputs,
doc = bc.doc,
src_mask = bc.input_mask,
tgt_mask = bc.reply_mask,
doc_mask = bc.doc_mask,
graph = bc.graph,
graph_mask = bc.graph_mask,
head_text = bc.head_text,
rel_text = bc.rel_text,
tail_text = bc.tail_text
)
loss = criterion(output.permute(0, 2, 1), bc.reply_labels)
loss.backward()
print(f"Round: {ep + 1}, it: {i + 1}, loss: {loss.item()}.")
optimizer.step()
scheduler.step()
self.save(config["save_path"])
torch.cuda.empty_cache()
print("done")
def save(self, dir = './checkpoints'):
torch.save(self.state_dict(), dir)
def generate_self(self):
self.eval()
def load_checkpoints(self, path):
print("Loading checkpoint from {}".format(path))
self.load_state_dict(torch.load(path))
def encode(self, src, doc, src_mask, doc_mask, graph, graph_mask):
#B, N, _ = graph.shape
head = graph[:,:,0]
rel = graph[:, :,1]
tail = graph[:, :, 2]
encoder_output = self.text_encoder(
input_ids = src,
#inputs_embeds = src_embedding,
token_type_ids = torch.zeros_like(src).masked_fill(src == self.sep_id, 1).cumsum(dim = -1),
attention_mask = src_mask
)
#with torch.no_grad():
head_embeddings = self.ent_embedding(head)
rel_embeddings = self.rel_embedding(rel)
tail_embeddings = self.ent_embedding(tail)
src_hidden = encoder_output.last_hidden_state
#print(1, torch.any(torch.isnan(src_hidden)))
#print(torch.any(torch.isnan(d)))
if self.config["back_bone"] == "bart":
doc_output = self.doc_encoder(
input_ids = doc,
attention_mask = doc_mask
)
elif self.config["back_bone"] == "bert":
#doc_embedding = self.get_graph_text_embedding(doc)
doc_output = self.text_encoder(
input_ids = doc,
#inputs_embeds = doc_embedding,
token_type_ids=torch.zeros_like(doc).masked_fill(doc == self.sep_id, 1).cumsum(dim=-1),
attention_mask = doc_mask
)
doc_hidden = doc_output.last_hidden_state
#print(2, torch.any(torch.isnan(doc_hidden)))
#mix encoding
new_src_hidden, new_doc_hidden = self.mix_encoder.forward(
src = src_hidden,
doc = doc_hidden,
src_mask = src_mask,
doc_mask = doc_mask,
head = head_embeddings,
rel = rel_embeddings,
tail = tail_embeddings,
graph_mask = graph_mask
)
#print(3, torch.any(torch.isnan(new_src_hidden)))
#print(4, torch.any(torch.isnan(new_doc_hidden)))
return self.norm1(src_hidden + new_src_hidden), self.norm2(doc_hidden + new_doc_hidden), head_embeddings, rel_embeddings, tail_embeddings
def decode(self, memory, tgt, doc, src_mask, tgt_mask, doc_mask, head_embeddings, rel_embeddings, tail_embeddings, graph_mask, history_text, doc_text, head_text, rel_text, tail_text):
#rough decoding
#print(memory.shape, src_mask.shape)
#print(src_mask.shape)
#print(tgt.shape, tgt_mask.shape)
decoder_output = self.basic_decoder(
encoder_hidden_states = memory,
encoder_attention_mask = src_mask,
input_ids = tgt,
attention_mask = tgt_mask,
output_hidden_states = True,
token_type_ids = torch.ones_like(tgt)
)
if self.config["back_bone"] == "bert":
decoder_hidden = decoder_output.hidden_states[-1]
elif self.config["back_bone"] == "bart":
decoder_hidden = decoder_output.last_hidden_state
#print(torch.any(torch.isnan(decoder_hidden)))
#mix decoding
new_decoder_hidden, h_attn, g_attn, d_attn = self.mix_decoder.forward(
memory = memory,
reply = decoder_hidden,
doc = doc,
memory_mask = src_mask,
reply_mask = tgt_mask,
doc_mask = doc_mask,
head = head_embeddings,
rel = rel_embeddings,
tail = tail_embeddings,
graph_mask = graph_mask
)
#print(torch.any(torch.isnan(new_decoder_hidden)))
new_decoder_hidden = self.norm3(decoder_hidden + new_decoder_hidden)
pred = self.linear(new_decoder_hidden)
if not self.config["do_copy"]:
return F.log_softmax(pred + 1e-20, dim = -1)
p_pointer = self.p_pointer(pred)
#prepare
B, N, L = tail_text.shape
#head_text_ = head_text.view(B, -1)
#rel_text_ = rel_text.view(B, -1)
tail_text_ = tail_text.view(B, -1)
#head_text_embeddings = self.get_graph_text_embedding(head_text).view(B, -1, self.config["model_dim"])
#rel_text_embeddings = self.get_graph_text_embedding(rel_text).view(B, -1, self.config["model_dim"])
tail_text_embeddings = self.get_graph_text_embedding(tail_text).view(B, -1, self.config["model_dim"])
#print(p_pointer.shape)
if self.config["do_doc_fusion"] and self.config["do_graph_fusion"]:
ph = p_pointer[:, :, 0].unsqueeze(-1)
pd = p_pointer[:, :, 1].unsqueeze(-1)
pk = p_pointer[:, :, 2].unsqueeze(-1)
pv = p_pointer[:, :, 3].unsqueeze(-1)
elif self.config["do_doc_fusion"]:
ph = p_pointer[:, :, 0].unsqueeze(-1)
pd = p_pointer[:, :, 1].unsqueeze(-1)
#pk = p_pointer[:, :, 2].unsqueeze(-1)
pv = p_pointer[:, :, 2].unsqueeze(-1)
elif self.config["do_graph_fusion"]:
ph = p_pointer[:, :, 0].unsqueeze(-1)
#pd = p_pointer[:, :, 1].unsqueeze(-1)
pk = p_pointer[:, :, 1].unsqueeze(-1)
pv = p_pointer[:, :, 2].unsqueeze(-1)
else:
ph = p_pointer[:, :, 0].unsqueeze(-1)
#pd = p_pointer[:, :, 1].unsqueeze(-1)
#pk = p_pointer[:, :, 2].unsqueeze(-1)
pv = p_pointer[:, :, 1].unsqueeze(-1)
#h_attn = self.mix_decoder.layers[-1].history_w
#d_attn = self.mix_decoder.layers[-1].doc_w
#g_attn = self.mix_decoder.layers[-1].graph_w
#print(B, N, L)
#print(g_attn.shape)
_, k_attn = self.tail_text_attn.forward(
query = new_decoder_hidden,
key = tail_text_embeddings,
value = tail_text_embeddings,
key_padding_mask = (tail_text_ == 0)
)
#t_attn = F.softmax(torch.mul(k_attn.view(B, -1, N, L), g_attn.unsqueeze(-1)).view(B, -1, N * L), dim = -1)
#k_attn =
#print(t_attn.shape)
output = F.softmax(pred, dim = -1)
output = output * pv
if self.config["do_doc_fusion"]:
output = output.scatter_add(2, doc_text.unsqueeze(1).repeat(1, output.shape[1], 1), pd * d_attn)
output = output.scatter_add(2, history_text.unsqueeze(1).repeat(1, output.shape[1], 1), ph * h_attn)
if self.config["do_graph_fusion"]:
output = output.scatter_add(2, tail_text_.unsqueeze(1).repeat(1, output.shape[1], 1), pk * k_attn)
output = output + 1e-20
return torch.log(output)
def forward(self, src, tgt, doc, src_mask, tgt_mask, doc_mask, graph, graph_mask, head_text, rel_text, tail_text):
#encoding
memory, doc_hidden, head_embeddings, rel_embeddings, tail_embeddings = self.encode(
src = src,
doc = doc,
src_mask = src_mask,
doc_mask = doc_mask,
graph = graph,
graph_mask = graph_mask
)
#decoding
pred = self.decode(
memory = memory,
tgt = tgt,
doc = doc_hidden,
src_mask = src_mask,
tgt_mask = tgt_mask,
doc_mask = doc_mask,
head_embeddings = head_embeddings,
rel_embeddings = rel_embeddings,
tail_embeddings = tail_embeddings,
graph_mask = graph_mask,
history_text = src,
doc_text = doc,
head_text = head_text,
rel_text = rel_text,
tail_text = tail_text
)
return pred
def resize_embedding(self, size):
self.text_encoder.resize_token_embeddings(size)
self.basic_decoder.resize_token_embeddings(size)
if self.config["back_bone"] == 'bart':
self.doc_encoder.resize_token_embeddings(size)
def get_graph_text_embedding(self, text):
#print(text.shape)
if self.config['back_bone'] == "bert":
text_embedding = self.text_encoder.embeddings.word_embeddings(text)
#pos = torch.ones_like(text).cumsum(dim = -1)
pos = torch.arange(0, text.shape[-1], 1, dtype=torch.long, device=text.device)
text_pos_embedding = self.text_encoder.embeddings.position_embeddings(pos)
seg = torch.zeros_like(text)
text_seg_embedding = self.text_encoder.embeddings.token_type_embeddings(seg)
return self.text_encoder.embeddings.dropout(self.text_encoder.embeddings.LayerNorm(text_embedding + text_seg_embedding + text_pos_embedding))
elif self.config["back_bone"] == "bart":
text_embedding = self.text_encoder.embed_tokens(text) * self.text_encoder.embed_scale
pos = torch.arange(0, text.shape[-1], 1, dtype=torch.long, device=text.device)
pos_embedding = self.pos_embedding(pos)
embedding = self.text_encoder.layernorm_embedding(text_embedding + pos_embedding)
return F.dropout(embedding, p = self.text_encoder.dropout, training = self.training)
def get_input_text_embedding(self, inputs): # Not used
if self.config["back_bone"] == "bert":
token_embedding = self.text_encoder.embeddings.word_embeddings(inputs)
pos = torch.arange(0, inputs.shape[1], 1, dtype=torch.long, device=inputs.device)
pos_embedding = self.text_encoder.embeddings.position_embeddings(pos)
seg = torch.zeros_like(inputs)
seg = seg.masked_fill(inputs == self.sep_id, 1).cumsum(dim = -1)
#print(seg)
text_seg_embedding = self.input_seg_embedding(seg)
return self.drop2(self.norm4(token_embedding + pos_embedding + text_seg_embedding))
def get_doc_text_embedding(self, doc): # Not used
if self.config["back_bone"] == "bert":
token_embedding = self.text_encoder.embeddings.word_embeddings(doc)
pos = torch.arange(0, doc.shape[1], 1, dtype=torch.long, device=doc.device)
pos_embedding = self.text_encoder.embeddings.position_embeddings(pos)
seg = torch.zeros_like(doc)
seg = seg.masked_fill(doc == self.sep_id, 1).cumsum(dim = -1)
#print(seg)
text_seg_embedding = self.doc_seg_embedding(seg)
return self.drop2(self.norm5(token_embedding + pos_embedding + text_seg_embedding))
def gen_self(self, dataloader: DataLoader, device, max_len = 64):
self.eval()
querys = []
golds = []
gens = []
with torch.no_grad():
for batch in tqdm(dataloader, unit = 'batch'):
b: Batch = batch
b.to(device)
words = self.gen(b, max_len = max_len)
gens += words
querys += b.inputs.cpu().tolist()
golds += b.reply_labels.cpu().tolist()
return self.purify(querys), self.purify(golds), self.purify(gens)
def gen(self, batch: Batch, max_len = 64):
graph = batch.graph
memory, doc_hidden, head_embeddings, rel_embeddings, tail_embeddings = self.encode(
src = batch.inputs,
doc = batch.doc,
src_mask = batch.input_mask,
doc_mask = batch.doc_mask,
graph = graph,
graph_mask = batch.graph_mask
)
tgt = torch.zeros((batch.inputs.size(0), 1)).long().to(batch.inputs.device)
outputs = torch.zeros((batch.inputs.size(0), max_len)).long()
tgt = tgt + self.sos_id
for i in range(max_len):
out = self.decode(
memory = memory,
tgt = tgt,
doc = doc_hidden,
src_mask = batch.input_mask,
tgt_mask = None,
doc_mask = batch.doc_mask,
head_embeddings = head_embeddings,
rel_embeddings = rel_embeddings,
tail_embeddings = tail_embeddings,
graph_mask = batch.graph_mask,
history_text = batch.inputs,
doc_text = batch.doc,
head_text = batch.head_text,
rel_text = batch.rel_text,
tail_text = batch.tail_text
)
_, next_ids = torch.max(out, dim = -1)
next_ids = next_ids[:, -1]
outputs[:, i] = next_ids
tgt = torch.cat([tgt, next_ids.unsqueeze(-1)], dim = -1)
#print(tgt.size())
if (tgt == self.eos_id).any(1).all().item():
break
return outputs.cpu().tolist()
def purify(self, sents):
res = []
for sent in sents:
new_sent = []
for token in sent:
if token == self.eos_id:
break
elif token == self.pad_id:
continue
new_sent.append(token)
res.append(new_sent)
return res
if __name__ == "__main__":
#torch.manual_seed(3407)
config = ModelConfig()
config.read_json_config('./settings/model_config.json')
ds = MyDataset("film", "film-new")
#ds.make(src_dir = "./processed_data/KdConv/film", save_dir = './processed_data')
ds.from_preprocessed('/data/yangpan/processed_data/film-new.pkl')
md = Model(
token_num = ds.num_token,
ent_num = ds.graph_train_set.ent_num,
rel_num = ds.graph_train_set.rel_num,
pad_id = ds.pad_token_id,
sos_id = ds.sos_token_id,
eos_id = ds.eos_token_id,
config = config
)
#md.resize_embedding(len(ds.tokenizer.get_vocab()))
run_config = TrainConfig()
run_config.read_json_config("./settings/train_config.json")
loader = DataLoader(dataset = ds.train_set, batch_size = run_config["batch_size"], shuffle = True, num_workers = 2, collate_fn = ds.collate_fn)
model = md.to(run_config["device"])
model.load_graph_embedding_weights('/root/autodl-tmp/checkpoints')
model.train_self(dataloader = loader, config = run_config)