genome.js is a Javascript to help build insane genetics algorithms in a few minutes.
-
Population: a subset of the possible solutions to the problem (ie. subset of chromosomes)
-
Chromosome: a specific solution to the problem
-
Gene: a value defining a chromosome
- Blueprint: a schema defining the structure of every gene (number and possible values) in a chromosome.
npm install --save genome.js
Methods | Return type | Description |
---|---|---|
constructor(size: number, blueprint: Blueprint) |
Population |
Create a population with size chromosomes using the blueprint |
setFitnessCalculation(fitnessCalculation: any) |
null |
Set the fitness calculation function. It should return a number value corresponding to the fitness of a chromosome. |
setStopAt(fitness: number) |
null |
Stop the process once a chromosome reaches AT LEAST fitness value on its fitness. |
setMutationRate(mutationRate: number) |
null |
Set the mutation rate value. It should be between 0 (no mutation at all) and 1 (every chromosome will be mutated) |
setCutOff(cutOff: number) |
null |
Set the cut off value. It should be between 0 (no chromosome will be removed) and 1 (every chromosome will be removed) |
run(rounds: number = 1) |
null |
Run the process rounds times. |
getGenerationNumber() |
number |
Return the current round number. |
getBestChromosome() |
Chromosome |
Return the best chromosome. |
Methods | Return type | Description |
---|---|---|
getGenes() |
Gene[] |
Return the genes of the chromosome. |
getFitness() |
Gene[] |
Return the fitness of the chromosome. |
Methods | Return type | Description |
---|---|---|
get() |
number |
Return the allele (value) of the gene. |
Methods | Return type | Description |
---|---|---|
constructor() |
Blueprint |
Create a new Blueprint . |
add(factor: number, times: number = 1) |
null |
Define a property into the blueprint. The factor is used when you get back the allele (value) of a gene (ex: a gene created with add(26) will return a number between 0 and 25 ). You can add times a property by setting the times parameter. |
Methods | Return type | Description |
---|---|---|
static on(eventType: GenomeEventType, callback: any) |
null |
STATIC Run the callback function when the event eventType is trigger. |
Name | Description |
---|---|
GENOME_EVENT_POPULATION_CREATED |
Trigger when all chromosomes are initialized |
GENOME_EVENT_GENERATION_BEGIN |
Trigger when a new generation is processed |
GENOME_EVENT_GENERATION_END |
Trigger when a generation is done processing |
GENOME_EVENT_GENERATION_FINISH |
Trigger when the all processing is done (rounds limit or fitness limit) |
/*
* This example is based on the "infinite monkey theorem" (https://en.wikipedia.org/wiki/Infinite_monkey_theorem)
*
* The algorithm tries to reproduce a specific text input, here "helloworldhowareyoutoday" in a minimum rounds.
*/
// Importing all the dependencies
import {
Population,
Blueprint,
Gene,
Chromosome,
GenomeEvent,
GenomeEventType
} from "genome.js";
// Defining the string to reproduce
const answer = "helloworldhowareyoutoday";
// We create a blueprint to represent the data structure of a chromosome
const blueprint = new Blueprint();
// Our chromosomes will have 'answer.length' genes between 0 and 26 (not included), so that each gene can represent one letter of the alphabet
blueprint.add(26, answer.length);
// We generate a population of 500 chromosomes using our blueprint
const population = new Population(500, blueprint);
// Just some basic configurations
population.setMutationRate(0.01);
population.setCutOff(0.5);
population.setStopAt(100); // We stop the processing when a chromosome reach AT LEAST 100 on his fitness
// We define now the function that calculate the fitness of every chromosome on each generation
// Be sure to never return 0 (cause a bug, WIP)
population.setFitnessCalculation((genes: Gene[]) => {
let sum = 1; // Avoid to have 0 on fitness
for (let i = 0; i < genes.length; i += 1) {
const charCode = answer.charCodeAt(i) - 97;
const geneCharCode = Math.floor(genes[i].get());
// If the gene value is corresponding with the answer letter at the same location, then increment 'sum'
if (charCode === geneCharCode) {
sum += 1;
}
}
// Basically a percent of correct genes' values
return (sum / (genes.length + 1)) * 100;
});
// We wait for a generation to end, and we display the best chromosome fitness into the console
GenomeEvent.on(
GenomeEventType.GENOME_EVENT_GENERATION_END,
(chromosomes: Chromosome[]) => {
const bestChromosome = chromosomes[0];
console.log(
`Generation ${population.getGenerationNumber()}: ${bestChromosome.getFitness()}`
);
}
);
// Once the process in finished (when a chromosome reach the fitness limit or the process has reach the round limit), we display the string contained in its genes
GenomeEvent.on(
GenomeEventType.GENOME_EVENT_GENERATION_FINISH,
(chromosomes: Chromosome[]) => {
let finalString = "";
const bestChromosome = chromosomes[0];
bestChromosome.getGenes().map((gene: Gene) => {
finalString += String.fromCharCode(gene.get() + 97);
});
console.log(
`Result (fitness: ${bestChromosome.getFitness()}): ${finalString}`
);
}
);
// We process the algorithm throught 500 rounds (more options comming soon)
population.run(500);