-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_model_dataset.py
389 lines (327 loc) · 17.7 KB
/
get_model_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
import os
import json
from collections import OrderedDict
from torchvision import transforms
import torch
from torch.utils.data import DataLoader, Subset, ConcatDataset, Dataset
from torchvision.datasets import CIFAR10, CIFAR100, SVHN, GTSRB, Food101, SUN397, EuroSAT, UCF101, StanfordCars, Flowers102, DTD, OxfordIIITPet, MNIST, ImageNet, ImageFolder
import numpy as np
from PIL import Image
import lmdb
import pickle
import six
import os
'''
function for loading datasets
contains:
1. CIFAR-10
2. CIFAR-100
3. SVHN
4. GTSRB
5. FOOD-101
6. SUN-397
7. EUROSAT
8. UCF-101
9. Stanford Cars
10. FLOWERS-102
11. DTD
12. Oxford Pets
13. MNIST
14. ImageNet
'''
IMAGENETNORMALIZE = {
'mean': [0.485, 0.456, 0.406],
'std': [0.229, 0.224, 0.225],
}
def get_model(args):
torch.hub.set_dir('./cache')
# network
if args.network == "resnet18":
from torchvision.models import resnet18, ResNet18_Weights
network = resnet18(weights=ResNet18_Weights.IMAGENET1K_V1).to(args.device)
elif args.network == "resnet50":
from torchvision.models import resnet50, ResNet50_Weights
network = resnet50(weights=ResNet50_Weights.IMAGENET1K_V2).to(args.device)
elif args.network == "instagram":
from torch import hub
network = hub.load('facebookresearch/WSL-Images', 'resnext101_32x8d_wsl').to(args.device)
elif args.network == 'vgg':
from torchvision.models import vgg16, VGG16_Weights, vgg16_bn, VGG16_BN_Weights
network = vgg16(weights=VGG16_Weights.IMAGENET1K_V1).to(args.device)
# network = vgg16_bn(weights=VGG16_BN_Weights.IMAGENET1K_V1).to(args.device)
else:
raise NotImplementedError(f"{args.network} is not supported")
return network
def image_transform(args, transform_type):
normalize = transforms.Normalize(mean=IMAGENETNORMALIZE['mean'], std=IMAGENETNORMALIZE['std'])
if transform_type == 'vp':
train_transform = transforms.Compose([
transforms.Resize((int(args.input_size*9/8), int(args.input_size*9/8))),
transforms.RandomCrop(args.input_size),
transforms.RandomHorizontalFlip(),
transforms.Lambda(lambda x: x.convert('RGB') if hasattr(x, 'convert') else x),
transforms.ToTensor(),
])
test_transform = transforms.Compose([
transforms.Resize((args.input_size, args.input_size)),
transforms.Lambda(lambda x: x.convert('RGB') if hasattr(x, 'convert') else x),
transforms.ToTensor(),
])
elif transform_type == 'ff':
train_transform = transforms.Compose([
transforms.Resize((252,252)),
transforms.RandomCrop(224),
transforms.RandomHorizontalFlip(),
transforms.Lambda(lambda x: x.convert('RGB') if hasattr(x, 'convert') else x),
transforms.ToTensor(),
normalize
])
test_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.Lambda(lambda x: x.convert('RGB') if hasattr(x, 'convert') else x),
transforms.ToTensor(),
normalize
])
return train_transform, test_transform, normalize
def get_torch_dataset(args, transform_type):
data_path = os.path.join(args.data, args.dataset)
dataset = args.dataset
train_transform, test_transform, normalize = image_transform(args, transform_type)
if args.prune_method=='vpns' or 'vp' in args.prune_mode:
val_transform = test_transform
else:
val_transform = train_transform
if dataset == "cifar10":
train_set = CIFAR10(data_path, train=True, transform=train_transform, download=True)
val_set = CIFAR10(data_path, train=True, transform=val_transform, download=True)
test_set = CIFAR10(data_path, train=False, transform=test_transform, download=True)
class_cnt = 10
elif dataset == "cifar100":
train_set = CIFAR100(data_path, train=True, transform=train_transform, download=True)
val_set = CIFAR100(data_path, train=True, transform=val_transform, download=True)
test_set = CIFAR100(data_path, train=False, transform=test_transform, download=True)
class_cnt = 100
elif dataset == "svhn":
train_set = SVHN(data_path, split = 'train', transform=train_transform, download=True)
val_set = SVHN(data_path, split = 'train', transform=val_transform, download=True)
test_set = SVHN(data_path, split = 'test', transform=test_transform, download=True)
class_cnt = 10
elif dataset == "gtsrb":
full_data = GTSRB(root = data_path, split = 'train', download = True)
train_indices, val_indices = get_indices(full_data)
train_set = Subset(GTSRB(data_path, split = 'train', transform=train_transform, download=True), train_indices)
val_set = Subset(GTSRB(data_path, split = 'train', transform=val_transform, download=True), val_indices)
test_set = GTSRB(data_path, split = 'test', transform=test_transform, download=True)
class_cnt = 43
elif dataset == 'food101':
train_set = Food101(data_path, split = 'train', transform=train_transform, download=True)
val_set = Food101(data_path, split = 'train', transform=val_transform, download=True)
test_set = Food101(data_path, split = 'test', transform=test_transform, download=True)
class_cnt = 101
elif dataset == 'sun397':
img_dir = os.path.join(data_path, 'SUN397')
train_partition_file = os.path.join(data_path, 'Partitions/Training_01.txt')
test_partition_file = os.path.join(data_path, 'Partitions/Testing_01.txt')
target_file = os.path.join(data_path, 'Partitions/ClassName.txt')
full_data = SUN397Dataset(img_dir = img_dir, partition_file = train_partition_file, target_file=target_file)
train_indices, val_indices = get_indices(full_data)
train_set = Subset(SUN397Dataset(img_dir = img_dir, partition_file = train_partition_file, target_file=target_file, transform=train_transform), train_indices)
val_set = Subset(SUN397Dataset(img_dir = img_dir, partition_file = train_partition_file, target_file=target_file, transform=val_transform), val_indices)
test_set = SUN397Dataset(img_dir = img_dir, partition_file = test_partition_file, target_file=target_file, transform=test_transform)
class_cnt = 397
elif dataset == 'eurosat':
full_data = EuroSAT(root = data_path, split = 'train', download = True)
train_indices, val_indices = get_indices(full_data)
train_set = Subset(EuroSAT(data_path, split = 'train', transform=train_transform, download=True), train_indices)
val_set = Subset(EuroSAT(data_path, split = 'train', transform=val_transform, download=True), val_indices)
test_set = EuroSAT(data_path, split = 'test', transform=test_transform, download=True)
class_cnt = 10
elif dataset == 'ucf101':
annotation_path = os.path.join(data_path, 'ucfTrainTestlist')
data_path = os.path.join(data_path, 'UCF-101')
full_data = UCF101(root = data_path, annotation_path=annotation_path, frames_per_clip=1, fold=1, train = True)
train_indices, val_indices = get_indices(full_data)
train_set = Subset(UCF101(data_path, train = True, annotation_path=annotation_path, frames_per_clip=1, fold=1, transform=train_transform), train_indices)
val_set = Subset(UCF101(data_path, train = True, annotation_path=annotation_path, frames_per_clip=1, fold=1, transform=val_transform), val_indices)
test_set = UCF101(data_path, train = False, annotation_path=annotation_path, frames_per_clip=1, fold=1, transform=test_transform)
class_cnt = 101
elif dataset == 'stanfordcars':
data_path = os.path.join(data_path, 'car_data/car_data')
train_set = ImageFolder(data_path+'/train/', transform=train_transform)
val_set = ImageFolder(data_path+'/train/', transform=val_transform)
test_set = ImageFolder(data_path+'/test/', transform=test_transform)
class_cnt = 196
elif dataset == 'flowers102':
train_set = ConcatDataset([COOPLMDBDataset(root = data_path, split="train", transform = train_transform), \
COOPLMDBDataset(root = data_path, split="val", transform = train_transform)])
val_set = ConcatDataset([COOPLMDBDataset(root = data_path, split="val", transform = val_transform), \
COOPLMDBDataset(root = data_path, split="train", transform = val_transform)])
test_set = COOPLMDBDataset(root = data_path, split="test", transform = test_transform)
class_cnt = 102
elif dataset == 'dtd':
train_set = ConcatDataset([DTD(root = data_path, split = 'train', transform=train_transform, download = True), \
DTD(root = data_path, split = 'val', transform=train_transform, download = True)])
val_set = ConcatDataset([DTD(root = data_path, split = 'val', transform=val_transform, download = True), \
DTD(root = data_path, split = 'train', transform=val_transform, download = True)])
test_set = DTD(data_path, split = 'test', transform=test_transform, download=True)
class_cnt = 47
elif dataset == 'oxfordpets':
train_set = OxfordIIITPet(data_path, split = 'trainval', transform=train_transform, download=True)
val_set = OxfordIIITPet(data_path, split = 'trainval', transform=val_transform, download=True)
test_set = OxfordIIITPet(data_path, split = 'test', transform=test_transform, download=True)
class_cnt = 37
elif dataset == 'mnist':
train_set = MNIST(data_path, train = True, transform=train_transform, download=True)
val_set = MNIST(data_path, train = True, transform=val_transform, download=True)
test_set = MNIST(data_path, train = False, transform=test_transform, download=True)
class_cnt = 10
elif dataset == 'imagenet':
imagenet_path = args.imagenet_path
train_set = ImageFolder(os.path.join(imagenet_path, 'train'), transform=train_transform)
val_set = ImageFolder(os.path.join(imagenet_path, 'train'), transform=val_transform)
test_set = ImageFolder(os.path.join(imagenet_path, 'val'), transform=test_transform)
class_cnt = 1000
elif dataset == 'tiny_imagenet':
train_set = ImageFolder(root=os.path.join(data_path, 'tiny-imagenet-200/train'), transform=train_transform)
val_set = ImageFolder(root=os.path.join(data_path, 'tiny-imagenet-200/train'), transform=val_transform)
test_set = TinyImageNet(os.path.join(data_path, 'tiny-imagenet-200/val/images'), os.path.join(data_path, 'tiny-imagenet-200/val/val_annotations.txt'),
os.path.join(data_path, 'tiny-imagenet-200/wnids.txt'), transform=test_transform)
class_cnt = 200
else:
raise NotImplementedError(f"{dataset} not supported")
if dataset == 'imagenet':
train_loader = DataLoader(train_set, batch_size=1024, shuffle=True, num_workers=8, pin_memory=True)
val_loader = DataLoader(val_set, batch_size=1024, shuffle=True, num_workers=8, pin_memory=True)
test_loader = DataLoader(test_set, batch_size=1024, shuffle=False, num_workers=8, pin_memory=True)
elif dataset in ['dtd', 'oxfordpets']:
train_loader = DataLoader(train_set, batch_size=64, shuffle=True, num_workers=args.workers, pin_memory=True)
val_loader = DataLoader(val_set, batch_size=64, shuffle=True, num_workers=args.workers, pin_memory=True)
test_loader = DataLoader(test_set, batch_size=64, shuffle=False, num_workers=args.workers, pin_memory=True)
elif dataset in ['flowers102', 'stanfordcars']:
train_loader = DataLoader(train_set, batch_size=128, shuffle=True, num_workers=args.workers, pin_memory=True)
val_loader = DataLoader(val_set, batch_size=128, shuffle=True, num_workers=args.workers, pin_memory=True)
test_loader = DataLoader(test_set, batch_size=128, shuffle=False, num_workers=args.workers, pin_memory=True)
else:
train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True)
val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True)
test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True)
args.class_cnt = class_cnt
args.normalize = normalize
print(f'Dataset information: {dataset}\t {len(train_set)} images for training \t {len(val_set)} images for validation\t')
print(f'{len(test_set)} images for testing\t')
return train_loader, val_loader, test_loader
def get_indices(full_data):
full_len = len(full_data)
train_len = int(full_len * 0.9)
indices = np.random.permutation(full_len)
train_indices = indices[:train_len]
val_indices = indices[train_len:]
return train_indices, val_indices
def choose_dataloader(args):
if args.prune_method=='vpns' or 'vp' in args.prune_mode:
print('choose visual prompt dataset')
train_loader, val_loader, test_loader = get_torch_dataset(args, 'vp')
else:
print('choose full finetune dataset')
train_loader, val_loader, test_loader = get_torch_dataset(args, 'ff')
return train_loader, val_loader, test_loader
class SubsetWithTransform(Subset):
def __init__(self, dataset, indices, transform=None):
super(SubsetWithTransform, self).__init__(dataset, indices)
self.transform = transform
def __getitem__(self, idx):
x, y = self.dataset[self.indices[idx]]
if self.transform:
x = self.transform(x)
return x, y
class SUN397Dataset(Dataset):
def __init__(self, img_dir, partition_file, target_file, transform=None):
self.img_dir = img_dir
self.transform = transform
with open(target_file, 'r') as f:
self.label_names = [l.strip() for l in f.readlines()]
self.label_idx = {name: idx for idx,name in enumerate(self.label_names)}
self.img_names = []
self.targets = []
with open(partition_file, 'r') as f:
lines = f.readlines()
for l in lines:
l = l.strip()
self.img_names.append(l)
label_name, _ = os.path.split(l)
self.targets.append(self.label_idx[label_name])
def __len__(self):
return len(self.img_names)
def __getitem__(self, idx):
img_name = self.img_names[idx]
img_path = self.img_dir+img_name
image = Image.open(img_path).convert('RGB')
if self.transform:
image = self.transform(image)
target = self.targets[idx]
return image, target
class TinyImageNet(Dataset):
def __init__(self, root_dir, annotations_file, label_ids_file, transform=None):
self.root_dir = root_dir
self.transform = transform
self.entries = open(annotations_file).read().strip().split('\n')
with open(label_ids_file, 'r') as f:
self.label_names = [l.strip() for l in f.readlines()]
self.label_names = sorted(self.label_names)
self.label_idx = {name: idx for idx,name in enumerate(self.label_names)}
def __len__(self):
return len(self.entries)
def __getitem__(self, index):
line = self.entries[index].split('\t')
img_path, annotation = line[0], line[1]
image = Image.open(self.root_dir + '/' + img_path).convert('RGB')
if self.transform is not None:
image = self.transform(image)
return image, int(self.label_idx[annotation])
class LMDBDataset(Dataset):
def __init__(self, root, split='train', transform=None, target_transform=None):
super().__init__()
db_path = os.path.join(root, f"{split}.lmdb")
self.env = lmdb.open(db_path, subdir=os.path.isdir(db_path),
readonly=True, lock=False,
readahead=False, meminit=False)
with self.env.begin(write=False) as txn:
self.length = pickle.loads(txn.get(b'__len__'))
self.keys = pickle.loads(txn.get(b'__keys__'))
self.transform = transform
self.target_transform = target_transform
def __getitem__(self, index):
env = self.env
with env.begin(write=False) as txn:
byteflow = txn.get(self.keys[index])
unpacked = pickle.loads(byteflow)
# load img
imgbuf = unpacked[0]
buf = six.BytesIO()
buf.write(imgbuf)
buf.seek(0)
img = Image.open(buf)
# load label
target = unpacked[1]
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
# return img, target
return img, target
def __len__(self):
return self.length
def __repr__(self):
return self.__class__.__name__ + ' (' + self.db_path + ')'
class COOPLMDBDataset(LMDBDataset):
def __init__(self, root, split="train", transform=None) -> None:
super().__init__(root, split, transform=transform)
with open(os.path.join(root, "split.json")) as f:
split_file = json.load(f)
idx_to_class = OrderedDict(sorted({s[-2]: s[-1] for s in split_file["test"]}.items()))
self.classes = list(idx_to_class.values())
class ReverseImageFolder(ImageFolder):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def __getitem__(self, index):
return super().__getitem__(len(self) - 1 - index) # This reverses the order of items