-
Notifications
You must be signed in to change notification settings - Fork 7
/
utils.py
305 lines (260 loc) · 12.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import torch, skimage
from skimage import io, filters
from torchvision import transforms
import numpy as np
import random
def replace_BatchNorm2d(A, B, v=None, replace_bias=True, randomly_select=False, last_vs=None):
"""
randomly_select (bool): If you have randomly select neurons to replace at the last layer
last_vs (list): Neurons' indices selected at last layer, only available when `randomly_select` is True
"""
if v is None: v = B.num_features
# print('Replacing BatchNorm2d, v = {}'.format(v))
if last_vs is not None: assert len(last_vs) == v
else: last_vs = list(range(v))
# Replace
A.weight.data[last_vs] = B.weight.data[:v]
if replace_bias: A.bias.data[last_vs] = B.bias.data[:v]
A.running_mean.data[last_vs] = B.running_mean.data[:v]
A.running_var.data[last_vs] = B.running_var.data[:v]
# print('Replacing BatchNorm2d, A.shape = {}, B.shape = {}, vs = last_vs = {}'.format(A.weight.shape, B.weight.shape, last_vs))
return last_vs
def replace_Conv2d(A, B, v=None, last_v=None, replace_bias=True, disconnect=True, randomly_select=False, last_vs=None, vs=None):
"""
randomly_select (bool): Randomly select neurons to replace
last_vs (list): Neurons' indices selected at last layer
vs (list): Force the neurons' indices selected at this layer to be `vs` (useful in residual connection)
"""
if v is None: v = B.weight.shape[0]
if last_v is None: last_v = B.weight.shape[1]
# print('Replacing Conv2d, A.shape = {}, B.shape = {}, v = {}, last_v = {}'.format(A.weight.shape, B.weight.shape, v, last_v))
if last_vs is not None: assert len(last_vs) == last_v, "last_vs of length {} but should be {}".format(len(last_vs), last_v)
else: last_vs = list(range(last_v))
if vs is not None: assert len(vs) == v, "vs of length {} but should be {}".format(len(vs), v)
elif randomly_select: vs = random.sample(range(A.weight.shape[0]), v)
else: vs = list(range(v))
# Dis-connect
if disconnect:
A.weight.data[vs, :] = 0 # dis-connected
A.weight.data[:, last_vs] = 0 # dis-connected
# Replace
A.weight.data[np.ix_(vs, last_vs)] = B.weight.data[:v, :last_v]
if replace_bias and A.bias is not None: A.bias.data[vs] = B.bias.data[:v]
# print('Replacing Conv2d, A.shape = {}, B.shape = {}, vs = {}, last_vs = {}'.format(A.weight.shape, B.weight.shape, vs, last_vs))
return vs
def replace_Linear(A, B, v=None, last_v=None, replace_bias=True, disconnect=True, randomly_select=False, last_vs=None, vs=None):
"""
randomly_select (bool): Randomly select neurons to replace
last_vs (list): Neurons' indices selected at last layer, only available when `randomly_select` is True
force_vs (list): Force the neurons' indices selected at this layer to be `force_vs`, only available when `randomly_select` is True
(useful in residual connection)
"""
if v is None: v = B.weight.shape[0]
if last_v is None: last_v = B.weight.shape[1]
if last_vs is not None: assert len(last_vs) == last_v, "last_vs of length {} but should be {}".format(len(last_vs), last_v)
else: last_vs = list(range(last_v))
if vs is not None: assert len(vs) == v, "vs of length {} but should be {}".format(len(vs), v)
elif randomly_select: vs = random.sample(range(A.weight.shape[0]), v)
else: vs = list(range(v))
# Dis-connect
if disconnect:
A.weight.data[vs, :] = 0 # dis-connected
A.weight.data[:, last_vs] = 0 # dis-connected
# Replace
A.weight.data[np.ix_(vs, last_vs)] = B.weight.data[:v, :last_v]
if replace_bias and A.bias is not None: A.bias.data[vs] = B.bias.data[:v]
return vs
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
#print(output.shape)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].sum().float()
res.append(correct_k.mul_(100.0 / batch_size))
return res
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
import contextlib
class Interp1d(torch.autograd.Function):
"""
Borrowed from https://github.com/aliutkus/torchinterp1d
"""
def __call__(self, x, y, xnew, out=None):
return self.forward(x, y, xnew, out)
def forward(ctx, x, y, xnew, out=None):
"""
Linear 1D interpolation on the GPU for Pytorch.
This function returns interpolated values of a set of 1-D functions at
the desired query points `xnew`.
This function is working similarly to Matlab™ or scipy functions with
the `linear` interpolation mode on, except that it parallelises over
any number of desired interpolation problems.
The code will run on GPU if all the tensors provided are on a cuda
device.
Parameters
----------
x : (N, ) or (D, N) Pytorch Tensor
A 1-D or 2-D tensor of real values.
y : (N,) or (D, N) Pytorch Tensor
A 1-D or 2-D tensor of real values. The length of `y` along its
last dimension must be the same as that of `x`
xnew : (P,) or (D, P) Pytorch Tensor
A 1-D or 2-D tensor of real values. `xnew` can only be 1-D if
_both_ `x` and `y` are 1-D. Otherwise, its length along the first
dimension must be the same as that of whichever `x` and `y` is 2-D.
out : Pytorch Tensor, same shape as `xnew`
Tensor for the output. If None: allocated automatically.
"""
# making the vectors at least 2D
is_flat = {}
require_grad = {}
v = {}
device = []
eps = torch.finfo(y.dtype).eps
for name, vec in {'x': x, 'y': y, 'xnew': xnew}.items():
assert len(vec.shape) <= 2, 'interp1d: all inputs must be '\
'at most 2-D.'
if len(vec.shape) == 1:
v[name] = vec[None, :]
else:
v[name] = vec
is_flat[name] = v[name].shape[0] == 1
require_grad[name] = vec.requires_grad
device = list(set(device + [str(vec.device)]))
assert len(device) == 1, 'All parameters must be on the same device.'
device = device[0]
# Checking for the dimensions
assert (v['x'].shape[1] == v['y'].shape[1]
and (
v['x'].shape[0] == v['y'].shape[0]
or v['x'].shape[0] == 1
or v['y'].shape[0] == 1
)
), ("x and y must have the same number of columns, and either "
"the same number of row or one of them having only one "
"row.")
reshaped_xnew = False
if ((v['x'].shape[0] == 1) and (v['y'].shape[0] == 1)
and (v['xnew'].shape[0] > 1)):
# if there is only one row for both x and y, there is no need to
# loop over the rows of xnew because they will all have to face the
# same interpolation problem. We should just stack them together to
# call interp1d and put them back in place afterwards.
original_xnew_shape = v['xnew'].shape
v['xnew'] = v['xnew'].contiguous().view(1, -1)
reshaped_xnew = True
# identify the dimensions of output and check if the one provided is ok
D = max(v['x'].shape[0], v['xnew'].shape[0])
shape_ynew = (D, v['xnew'].shape[-1])
if out is not None:
if out.numel() != shape_ynew[0]*shape_ynew[1]:
# The output provided is of incorrect shape.
# Going for a new one
out = None
else:
ynew = out.reshape(shape_ynew)
if out is None:
ynew = torch.zeros(*shape_ynew, device=device)
# moving everything to the desired device in case it was not there
# already (not handling the case things do not fit entirely, user will
# do it if required.)
for name in v:
v[name] = v[name].to(device)
# calling searchsorted on the x values.
ind = ynew.long()
# expanding xnew to match the number of rows of x in case only one xnew is
# provided
if v['xnew'].shape[0] == 1:
v['xnew'] = v['xnew'].expand(v['x'].shape[0], -1)
torch.searchsorted(v['x'].contiguous(),
v['xnew'].contiguous(), out=ind)
# the `-1` is because searchsorted looks for the index where the values
# must be inserted to preserve order. And we want the index of the
# preceeding value.
ind -= 1
# we clamp the index, because the number of intervals is x.shape-1,
# and the left neighbour should hence be at most number of intervals
# -1, i.e. number of columns in x -2
ind = torch.clamp(ind, 0, v['x'].shape[1] - 1 - 1)
# helper function to select stuff according to the found indices.
def sel(name):
if is_flat[name]:
return v[name].contiguous().view(-1)[ind]
return torch.gather(v[name], 1, ind)
# activating gradient storing for everything now
enable_grad = False
saved_inputs = []
for name in ['x', 'y', 'xnew']:
if require_grad[name]:
enable_grad = True
saved_inputs += [v[name]]
else:
saved_inputs += [None, ]
# assuming x are sorted in the dimension 1, computing the slopes for
# the segments
is_flat['slopes'] = is_flat['x']
# now we have found the indices of the neighbors, we start building the
# output. Hence, we start also activating gradient tracking
with torch.enable_grad() if enable_grad else contextlib.suppress():
v['slopes'] = (
(v['y'][:, 1:]-v['y'][:, :-1])
/
(eps + (v['x'][:, 1:]-v['x'][:, :-1]))
)
# now build the linear interpolation
ynew = sel('y') + sel('slopes')*(
v['xnew'] - sel('x'))
if reshaped_xnew:
ynew = ynew.view(original_xnew_shape)
ctx.save_for_backward(ynew, *saved_inputs)
return ynew
def apply_Gotham(inputs):
"""
Pure GPU-version Gotham filter, modified from https://www.practicepython.org/blog/2016/12/20/instagram-filters-python.html
`inputs`: tensor of size [batch_size, #channel, width, height]
"""
device = inputs.device
sharpen = transforms.RandomAdjustSharpness(sharpness_factor=2)
def channel_adjust(channel, values):
orig_size = channel.shape
flat_channel = channel.flatten()
adjusted = Interp1d()(torch.linspace(0, 1, len(values)).to(device=channel.device), torch.tensor(values).to(device=channel.device), flat_channel)
return adjusted.reshape(orig_size)
r = inputs[:, 0, :, :]
b = inputs[:, 2, :, :]
r_boost_lower = channel_adjust(r, [0, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.8, 0.9, 0.95, 1.0])
b_more = torch.clip(b -3, 0, 1.0) # 0.03 -> 0.1
merged = torch.cat((r_boost_lower.unsqueeze(1), inputs[:, 1, :, :].unsqueeze(1), b_more.unsqueeze(1)), dim=1).to(device=device)
final = sharpen(merged)
b = final[:, 2, :, :]
b_adjusted = channel_adjust(b, [0, 0.047, 0.118, 0.251, 0.318, 0.392, 0.42, 0.439, 0.475, 0.561, 0.58, 0.627, 0.671, 0.733, 0.847, 0.925, 1])
final[:, 2, :, :] = b_adjusted
return final.float()
def apply_BlackWhite(inputs):
"""
`inputs`: tensor of size [batch_size, #channel, width, height]
"""
device = inputs.device
inputs = inputs.cpu()
r = inputs[:, 0, :, :]
g = inputs[:, 1, :, :]
b = inputs[:, 2, :, :]
final = (0.2989 * r + 0.5870 * g + 0.1140 * b).unsqueeze(1).repeat(1, 3, 1, 1).to(device=device)
return final.float()