-
Notifications
You must be signed in to change notification settings - Fork 1
/
nyu_mtl_xtc.py
330 lines (286 loc) · 17.3 KB
/
nyu_mtl_xtc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import os
import torch
import fnmatch
import numpy as np
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import argparse
import torch.utils.data.sampler as sampler
import shutil
from dataset.nyuv2ssl import *
from torch.autograd import Variable
from model.segnet_mtl import SegNet
from model.mapfns import Mapfns
from utils.evaluation import ConfMatrix, DepthMeter, NormalsMeter
import numpy as np
import pdb
from progress.bar import Bar as Bar
from utils import Logger, AverageMeter, accuracy, mkdir_p, savefig
from torch.autograd import Variable
import copy
parser = argparse.ArgumentParser(description='Multi-task partially-supervised learning with cross-task consistency (SegNet)')
parser.add_argument('--type', default='standard', type=str, help='split type: standard, wide, deep')
parser.add_argument('--weight', default='uniform', type=str, help='multi-task weighting: uniform')
parser.add_argument('--dataroot', default='./data/nyuv2', type=str, help='dataset root')
parser.add_argument('--temp', default=1.0, type=float, help='temperature for DWA (must be positive)')
parser.add_argument('--wlr', default=0.001, type=float, help='initial learning rate')
parser.add_argument('--out', default='./results/nyuv2', help='Directory to output the result')
parser.add_argument('--alpha', default=1.5, type=float, help='hyper params of GradNorm')
parser.add_argument('--ssl-type', default='randomlabels', type=str, help='ssl type: onelabel, randomlabels, full')
parser.add_argument('--labelroot', default='./data/nyuv2_settings/', type=str, help='partially setting root')
parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)')
parser.add_argument('--eval-last20', default=0, type=int, help='1 means we evaluate models in the last 20 epochs')
parser.add_argument('--rampup', default='fixed', type=str, help='up for ramp-up loss weight of cross-task consistency loss, fixed use constant loss weight.')
parser.add_argument('--con-weight', default=2.0, type=float, help='weight for cross-task consistency loss')
parser.add_argument('--reg-weight', default=0.5, type=float, help='weight for cross-task consistency loss')
opt = parser.parse_args()
tasks = ['semantic', 'depth', 'normal']
input_channels = [13, 1, 3]
if not os.path.isdir(opt.out):
mkdir_p(opt.out)
paths = [opt.ssl_type, 'mtl']
for i in range(len(paths)):
opt.out = os.path.join(opt.out, paths[i])
if not os.path.isdir(opt.out):
mkdir_p(opt.out)
stl_performance = {
'full': {'semantic': 37.447399999999995, 'depth': 0.607902, 'normal': 25.938105},
'onelabel': {'semantic': 26.1113, 'depth': 0.771502, 'normal': 30.073763},
'randomlabels': {'semantic': 28.7153, 'depth': 0.754012, 'normal': 28.946388}
}
def save_checkpoint(state, is_best, checkpoint=opt.out, filename='checkpoint.pth.tar'):
filepath = os.path.join(checkpoint, 'mtl_xtc_{}_{}_{}_{}_'.format(opt.ssl_type, opt.rampup, opt.con_weight, opt.reg_weight) + filename)
torch.save(state, filepath)
if is_best:
shutil.copyfile(filepath, os.path.join(checkpoint, 'mtl_xtc_{}_{}_{}_{}_'.format(opt.ssl_type, opt.rampup, opt.con_weight, opt.reg_weight) + 'model_best.pth.tar'))
title = 'NYUv2'
logger = Logger(os.path.join(opt.out, 'mtl_xtc_{}_{}_{}_{}_log.txt'.format(opt.ssl_type, opt.rampup, opt.con_weight, opt.reg_weight)), title=title)
logger.set_names(['Epoch', 'T.Ls', 'T. mIoU', 'T. Pix', 'T.Ld', 'T.abs', 'T.rel', 'T.Ln', 'T.Mean', 'T.Med', 'T.11', 'T.22', 'T.30',
'V.Ls', 'V. mIoU', 'V. Pix', 'V.Ld', 'V.abs', 'V.rel', 'V.Ln', 'V.Mean', 'V.Med', 'V.11', 'V.22', 'V.30', 'Con L', 'Ws', 'Wd', 'Wn'])
# define model, optimiser and scheduler
model = SegNet(type_=opt.type, class_nb=13).cuda()
mapfns = Mapfns(tasks=tasks, input_channels=input_channels).cuda()
params = []
params += model.parameters()
params += [v for k, v in mapfns.named_parameters() if 'gamma' not in k and 'beta' not in k]
optimizer = optim.Adam(params, lr=1e-4)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=100, gamma=0.5)
params_film = [v for k, v in mapfns.named_parameters() if 'gamma' in k or 'beta' in k]
# optimizer for the conditional auxiliary network
optimizer_film = optim.Adam(params_film, lr=1e-3)
scheduler_film = optim.lr_scheduler.StepLR(optimizer_film, step_size=30, gamma=0.5)
start_epoch = 0
if opt.resume:
checkpoint = torch.load(opt.resume)
model.load_state_dict(checkpoint['state_dict'], strict=True)
start_epoch = checkpoint['epoch']
optimizer.load_state_dict(checkpoint['optimizer'])
optimizer_film.load_state_dict(checkpoint['optimizer_film'])
print('=> checkpoint from {} loaded!'.format(opt.resume))
# compute parameter space
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
print('Parameter Space: ABS: {:.1f}, REL: {:.4f}\n'.format(count_parameters(model),
count_parameters(model)/24981069))
print('LOSS FORMAT: SEMANTIC_LOSS MEAN_IOU PIX_ACC | DEPTH_LOSS ABS_ERR ROOT_MSE | NORMAL_LOSS MEAN MED <11.25 <22.5 <30\n')
# define dataset path
dataset_path = opt.dataroot
if opt.ssl_type == 'onelabel':
labels_weights = torch.load('{}onelabel.pth'.format(opt.labelroot))['labels_weights'].float().cuda()
elif opt.ssl_type == 'randomlabels':
labels_weights = torch.load('{}randomlabels.pth'.format(opt.labelroot))['labels_weights'].float().cuda()
nyuv2_train_set = NYUv2_crop(root=dataset_path, train=True, augmentation=True, aug_twice=True)
nyuv2_test_set = NYUv2(root=dataset_path, train=False)
batch_size = 2
nyuv2_train_loader = torch.utils.data.DataLoader(
dataset=nyuv2_train_set,
batch_size=batch_size,
shuffle=True, num_workers=0, drop_last=True)
nyuv2_test_loader = torch.utils.data.DataLoader(
dataset=nyuv2_test_set,
batch_size=batch_size,
shuffle=False, num_workers=0)
# define parameters
total_epoch = 200
train_batch = len(nyuv2_train_loader)
test_batch = len(nyuv2_test_loader)
T = opt.temp
avg_cost = np.zeros([total_epoch, 24], dtype=np.float32)
ctl_cost = np.zeros([total_epoch, 1], dtype=np.float32)
lambda_weight = np.zeros([3, total_epoch])
best_performance = -100
isbest=False
for epoch in range(start_epoch, total_epoch):
index = epoch
print('lr at {}th epoch is {} for optimizer and {} for film'.format(index, optimizer.param_groups[0]['lr'], optimizer_film.param_groups[0]['lr']))
cost = np.zeros(24, dtype=np.float32)
# apply Dynamic Weight Average
if opt.weight == 'dwa':
if index == 0 or index == 1:
lambda_weight[:, index] = 1.0
else:
w_1 = avg_cost[index - 1, 0] / avg_cost[index - 2, 0]
w_2 = avg_cost[index - 1, 3] / avg_cost[index - 2, 3]
w_3 = avg_cost[index - 1, 6] / avg_cost[index - 2, 6]
lambda_weight[0, index] = 3 * np.exp(w_1 / T) / (np.exp(w_1 / T) + np.exp(w_2 / T) + np.exp(w_3 / T))
lambda_weight[1, index] = 3 * np.exp(w_2 / T) / (np.exp(w_1 / T) + np.exp(w_2 / T) + np.exp(w_3 / T))
lambda_weight[2, index] = 3 * np.exp(w_3 / T) / (np.exp(w_1 / T) + np.exp(w_2 / T) + np.exp(w_3 / T))
bar = Bar('Training', max=train_batch)
# iteration for all batches
model.train()
mapfns.train()
con_loss_ave = AverageMeter()
cost_seg = AverageMeter()
cost_depth = AverageMeter()
cost_normal = AverageMeter()
nyuv2_train_dataset = iter(nyuv2_train_loader)
for k in range(train_batch):
train_data, train_label, train_depth, train_normal, image_index, train_data1, train_label1, train_depth1, train_normal1, trans_params = nyuv2_train_dataset.next()
train_data, train_label = train_data.cuda(), train_label.type(torch.LongTensor).cuda()
train_depth, train_normal = train_depth.cuda(), train_normal.cuda()
train_data1, train_label1 = train_data1.cuda(), train_label1.type(torch.LongTensor).cuda()
train_depth1, train_normal1 = train_depth1.cuda(), train_normal1.cuda()
train_data_ = torch.cat([train_data, train_data1], dim=0)
train_pred, logsigma, feat = model(train_data_)
feat_aug = feat[0][batch_size:]
feat = feat[0][:batch_size]
train_pred_aug = [train_pred[0][batch_size:], train_pred[1][batch_size:], train_pred[2][batch_size:]]
train_pred = [train_pred[0][:batch_size], train_pred[1][:batch_size], train_pred[2][:batch_size]]
loss = 0
for ind_ in range(len(image_index)):
if opt.ssl_type == 'full':
w = torch.ones(len(tasks)).float().cuda()
else:
w = labels_weights[image_index[ind_]].clone().float().cuda()
train_pred_seg = train_pred_aug[0][ind_][None,:,:,:]
train_pred_depth = train_pred_aug[1][ind_][None,:,:,:]
train_pred_normal = train_pred_aug[2][ind_][None,:,:,:]
_sc, _h, _w, _i, _j, height, width = trans_params[ind_]
_h, _w, _i, _j, height, width = int(_h), int(_w), int(_i), int(_j), int(height), int(width)
train_target_ind = [train_label1[ind_].unsqueeze(0), train_depth1[ind_].unsqueeze(0), train_normal1[ind_].unsqueeze(0)]
train_loss_ind = model.model_fit(train_pred[0][ind_].unsqueeze(0), train_label[ind_].unsqueeze(0), train_pred[1][ind_].unsqueeze(0), train_depth[ind_].unsqueeze(0), train_pred[2][ind_].unsqueeze(0), train_normal[ind_].unsqueeze(0))
for i in range(len(tasks)):
if w[i] == 0:
train_loss_ind[i] = 0
train_pred_ind = [train_pred_seg, train_pred_depth, train_pred_normal]
# compute the cross-task consistency loss
con_loss = mapfns(train_pred_ind, train_target_ind, feat_aug[ind_].unsqueeze(0), copy.deepcopy(w), ssl_type=opt.ssl_type)
if opt.rampup == 'up':
if epoch > 99:
con_weight = 1
else:
con_weight = (k/train_batch + epoch) / 100
else:
con_weight = 1
con_weight *= opt.con_weight
con_loss_ave.update(con_loss.item(), 1)
loss = loss + sum(train_loss_ind[i] for i in range(len(tasks))) / len(image_index) + con_loss * con_weight / len(image_index)
train_loss = model.model_fit(train_pred[0], train_label, train_pred[1], train_depth, train_pred[2], train_normal)
optimizer.zero_grad()
optimizer_film.zero_grad()
loss.backward()
optimizer.step()
optimizer_film.step()
cost_seg.update(train_loss[0].item(), batch_size)
cost_depth.update(train_loss[1].item(), batch_size)
cost_normal.update(train_loss[2].item(), batch_size)
cost[0] = train_loss[0].item()
cost[1] = model.compute_miou(train_pred[0], train_label).item()
cost[2] = model.compute_iou(train_pred[0], train_label).item()
cost[3] = train_loss[1].item()
cost[4], cost[5] = model.depth_error(train_pred[1], train_depth)
cost[6] = train_loss[2].item()
cost[7], cost[8], cost[9], cost[10], cost[11] = model.normal_error(train_pred[2], train_normal)
avg_cost[index, :12] += cost[:12] / train_batch
ctl_cost[index, 0] += con_loss / train_batch
bar.suffix = '({batch}/{size}) | LossS: {loss_s:.4f} | LossD: {loss_d:.4f} | LossN: {loss_n:.4f} | Ws: {ws:.4f} | Wd: {wd:.4f}| Wn: {wn:.4f} | CTL: {ctl:.4f} | CW: {cw:.2f}'.format(
batch=k + 1,
size=train_batch,
# loss_s=cost[1],
# loss_d=cost[3],
# loss_n=cost[6],
loss_s=cost_seg.avg,
loss_d=cost_depth.avg,
loss_n=cost_normal.avg,
ws=w[0].data,
wd=w[1].data,
wn=w[2].data,
ctl=con_loss_ave.avg,
cw=con_weight,
)
bar.next()
bar.finish()
if opt.eval_last20 == 0:
evaluate = True
elif opt.eval_last20 and (epoch + 1) > (total_epoch - 20):
evaluate = True
else:
evaluate = False
# evaluating test data
if evaluate:
model.eval()
conf_mat = ConfMatrix(model.class_nb)
depth_mat = DepthMeter()
normal_mat = NormalsMeter()
with torch.no_grad(): # operations inside don't track history
nyuv2_test_dataset = iter(nyuv2_test_loader)
for k in range(test_batch):
test_data, test_label, test_depth, test_normal = nyuv2_test_dataset.next()
test_data, test_label = test_data.cuda(), test_label.type(torch.LongTensor).cuda()
test_depth, test_normal = test_depth.cuda(), test_normal.cuda()
test_pred, _, _ = model(test_data)
test_loss = model.model_fit(test_pred[0], test_label, test_pred[1], test_depth, test_pred[2], test_normal)
conf_mat.update(test_pred[0].argmax(1).flatten(), test_label.flatten())
depth_mat.update(test_pred[1], test_depth)
normal_mat.update(test_pred[2], test_normal)
cost[12] = test_loss[0].item()
cost[15] = test_loss[1].item()
cost[18] = test_loss[2].item()
avg_cost[index, 12:] += cost[12:] / test_batch
avg_cost[index, 13:15] = conf_mat.get_metrics()
depth_metric = depth_mat.get_score()
avg_cost[index, 16], avg_cost[index, 17] = depth_metric['l1'], depth_metric['rmse']
normal_metric = normal_mat.get_score()
avg_cost[index, 19], avg_cost[index, 20], avg_cost[index, 21], avg_cost[index, 22], avg_cost[index, 23] = normal_metric['mean'], normal_metric['rmse'], normal_metric['11.25'], normal_metric['22.5'], normal_metric['30']
scheduler.step()
scheduler_film.step()
mtl_performance = 0.0
mtl_performance += (avg_cost[index, 13]* 100 - stl_performance[opt.ssl_type]['semantic']) / stl_performance[opt.ssl_type]['semantic']
mtl_performance -= (avg_cost[index, 16] - stl_performance[opt.ssl_type]['depth']) / stl_performance[opt.ssl_type]['depth']
mtl_performance -= (avg_cost[index, 19] - stl_performance[opt.ssl_type]['normal']) / stl_performance[opt.ssl_type]['normal']
mtl_performance = mtl_performance / len(tasks) * 100
isbest = mtl_performance > best_performance
print('current performance: {:.4f}, best performance: {:.4f}'.format(mtl_performance, best_performance))
print('Epoch: {:04d} | TRAIN: {:.4f} {:.4f} {:.4f} | {:.4f} {:.4f} {:.4f} | {:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f} '
'TEST: {:.4f} {:.4f} {:.4f} | {:.4f} {:.4f} {:.4f} | {:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f}'
.format(index, avg_cost[index, 0], avg_cost[index, 1], avg_cost[index, 2], avg_cost[index, 3],
avg_cost[index, 4], avg_cost[index, 5], avg_cost[index, 6], avg_cost[index, 7], avg_cost[index, 8], avg_cost[index, 9],
avg_cost[index, 10], avg_cost[index, 11], avg_cost[index, 12], avg_cost[index, 13],
avg_cost[index, 14], avg_cost[index, 15], avg_cost[index, 16], avg_cost[index, 17], avg_cost[index, 18],
avg_cost[index, 19], avg_cost[index, 20], avg_cost[index, 21], avg_cost[index, 22], avg_cost[index, 23]))
logger.append([index, avg_cost[index, 0], avg_cost[index, 1], avg_cost[index, 2], avg_cost[index, 3],
avg_cost[index, 4], avg_cost[index, 5], avg_cost[index, 6], avg_cost[index, 7], avg_cost[index, 8], avg_cost[index, 9],
avg_cost[index, 10], avg_cost[index, 11], avg_cost[index, 12], avg_cost[index, 13],
avg_cost[index, 14], avg_cost[index, 15], avg_cost[index, 16], avg_cost[index, 17], avg_cost[index, 18],
avg_cost[index, 19], avg_cost[index, 20], avg_cost[index, 21], avg_cost[index, 22], avg_cost[index, 23], ctl_cost[index, 0],
lambda_weight[0, index], lambda_weight[1, index], lambda_weight[2, index]])
if isbest:
best_performance = mtl_performance
print_index = index
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'mapfns': mapfns.state_dict(),
'best_performance': best_performance,
'optimizer' : optimizer.state_dict(),
'optimizer_film': optimizer_film.state_dict(),
'avg_cost': avg_cost,
}, isbest)
print('Epoch: {:04d} | TRAIN: {:.4f} {:.4f} {:.4f} | {:.4f} {:.4f} {:.4f} | {:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f} '
'TEST: {:.4f} {:.4f} {:.4f} | {:.4f} {:.4f} {:.4f} | {:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f}'
.format(print_index, avg_cost[print_index, 0], avg_cost[print_index, 1], avg_cost[print_index, 2], avg_cost[print_index, 3],
avg_cost[print_index, 4], avg_cost[print_index, 5], avg_cost[print_index, 6], avg_cost[print_index, 7], avg_cost[print_index, 8], avg_cost[print_index, 9],
avg_cost[print_index, 10], avg_cost[print_index, 11], avg_cost[print_index, 12], avg_cost[print_index, 13],
avg_cost[print_index, 14], avg_cost[print_index, 15], avg_cost[print_index, 16], avg_cost[print_index, 17], avg_cost[print_index, 18],
avg_cost[print_index, 19], avg_cost[print_index, 20], avg_cost[print_index, 21], avg_cost[print_index, 22], avg_cost[print_index, 23]))