forked from kayla-hale/Pairwise_Mutualism
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNegative_Density-Dependence_zenodo.nb
9990 lines (9939 loc) · 562 KB
/
Negative_Density-Dependence_zenodo.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.3' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 575445, 9982]
NotebookOptionsPosition[ 572275, 9929]
NotebookOutlinePosition[ 572666, 9945]
CellTagsIndexPosition[ 572623, 9942]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
StyleBox[
RowBox[{"Seed", " ", "Dispersal", " ",
RowBox[{"Mutualism", ":", " ", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Negative", " ", "Density"}], "-",
RowBox[{"Dependence", " ", "Model", " "}]}]}]}], "Section"]], "Input",
CellChangeTimes->{{3.826634695246916*^9, 3.8266346986460447`*^9}, {
3.839795095880185*^9, 3.839795114533609*^9}, {3.8399692322977257`*^9,
3.83996924256207*^9}, {3.839969386986741*^9, 3.8399693911853237`*^9}, {
3.839975162035791*^9, 3.8399751664680223`*^9}, {3.848586493141828*^9,
3.848586499358535*^9}, {3.848586530075845*^9, 3.8485865351526957`*^9},
3.848587012457762*^9, 3.848590796639327*^9, {3.848622700647048*^9,
3.8486227018657923`*^9}},ExpressionUUID->"89a5e800-4a86-4269-b962-\
3f8a3fe7fe62"],
Cell["Author: Kayla R. S. Hale\tLast Revised: Dec. 15, 2021", "Author",
CellChangeTimes->{{3.8485908099356337`*^9, 3.8485908476883907`*^9},
3.8485908986276217`*^9, {3.8485909394813766`*^9, 3.848590984688075*^9}, {
3.848591047178636*^9,
3.848591111817094*^9}},ExpressionUUID->"5eabe83b-a45b-4695-a492-\
bd0d48ba0e1a"],
Cell[TextData[{
"Cite this work as: \nHale, K.R.S., Maes, D.P., & Valdovinos, F.S. (2021). \
Simple mechanisms of plant reproductive benefits yield different dynamics in \
pollination and seed dispersal mutualisms (",
StyleBox["in review",
FontSlant->"Italic"],
")."
}], "Text",
CellChangeTimes->{{3.8485910916143713`*^9, 3.848591096928546*^9},
3.848671558314288*^9},ExpressionUUID->"ec8d5a3f-c0b8-4b74-a1fd-\
ae397b0b54da"],
Cell[TextData[{
"Mutualism between animal seed dispersers which benefit plants by reducing \
negative density-dependence (",
Cell[BoxData[
FormBox[
TemplateBox[Association["boxes" -> FormBox[
SubscriptBox[
StyleBox["s", "TI"],
StyleBox["P", "TI"]], TraditionalForm], "errors" -> {}, "input" ->
"s_P", "state" -> "Boxes"],
"TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID->
"d91d2643-eadb-43ff-96bc-4ab50e53ee20"],
") and plants which benefit animals by providing nutritional rewards. Plant \
(",
Cell[BoxData[
FormBox[
TemplateBox[Association["boxes" -> FormBox[
StyleBox["P", "TI"], TraditionalForm], "errors" -> {}, "input" -> "P",
"state" -> "Boxes"],
"TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID->
"af13a318-e4a4-4ec4-9ad3-6d61b3099c16"],
") and animal seed disperser (",
Cell[BoxData[
FormBox[
TemplateBox[Association["boxes" -> FormBox[
StyleBox["A", "TI"], TraditionalForm], "errors" -> {}, "input" -> "A",
"state" -> "Boxes"],
"TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID->
"d3d5a592-c8f1-47f4-97e9-353952f6cef6"],
") population densities change over time according to the coupled \
differential equations:\n",
Cell[BoxData[
FormBox[
TemplateBox[Association["boxes" -> FormBox[
RowBox[{
FractionBox[
RowBox[{
StyleBox["d", "TI"],
StyleBox["P", "TI"]}],
RowBox[{
StyleBox["d", "TI"],
StyleBox["t", "TI"]}]], "\[LongEqual]",
StyleBox["P", "TI"], "*",
RowBox[{"[",
RowBox[{
SubscriptBox[
StyleBox["b", "TI"],
StyleBox["P", "TI"]],
StyleBox["f", "TI"],
StyleBox["g", "TI"], "-",
RowBox[{"(",
RowBox[{
SubscriptBox[
StyleBox["s", "TI"],
StyleBox["P", "TI"]], "-", "\[Sigma]",
FractionBox[
RowBox[{
StyleBox["a", "TI"],
StyleBox["A", "TI"]}],
RowBox[{"1", "+",
StyleBox["a", "TI"],
StyleBox["h", "TI"],
StyleBox["P", "TI"], "+",
StyleBox["a", "TI"],
StyleBox["A", "TI"]}]]}], ")"}],
StyleBox["P", "TI"], "-",
SubscriptBox[
StyleBox["d", "TI"],
StyleBox["P", "TI"]]}], "]"}]}], TraditionalForm],
"errors" -> {}, "input" ->
"\\frac{dP}{dt} =P*[b_P f g-(s_P-\\sigma \\frac{aA}{1+ahP+aA})P-d_P]",
"state" -> "Boxes"],
"TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID->
"99f26161-c531-4189-8bc6-91f9d0408776"],
"\n",
Cell[BoxData[
FormBox[
TemplateBox[Association["boxes" -> FormBox[
RowBox[{
FractionBox[
RowBox[{
StyleBox["d", "TI"],
StyleBox["A", "TI"]}],
RowBox[{
StyleBox["d", "TI"],
StyleBox["t", "TI"]}]], "\[LongEqual]",
StyleBox["A", "TI"], "*",
RowBox[{"[",
RowBox[{
SubscriptBox[
StyleBox["b", "TI"],
StyleBox["A", "TI"]], "+", "\[Epsilon]",
FractionBox[
RowBox[{
StyleBox["a", "TI"],
StyleBox["P", "TI"]}],
RowBox[{"1", "+",
StyleBox["a", "TI"],
StyleBox["h", "TI"],
StyleBox["P", "TI"]}]], "-",
SubscriptBox[
StyleBox["s", "TI"],
StyleBox["A", "TI"]],
StyleBox["A", "TI"], "-",
SubscriptBox[
StyleBox["d", "TI"],
StyleBox["A", "TI"]]}], "]"}]}], TraditionalForm],
"errors" -> {}, "input" ->
"\\frac{dA}{dt} =A*[b_A+ \\epsilon \\frac{aP}{1+ahP}-s_A A - d_A]",
"state" -> "Boxes"],
"TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID->
"ba4aba90-9308-428d-9d07-cedf75c37c00"],
"\nwhere ",
Cell[BoxData[
FormBox[
TemplateBox[Association["boxes" -> FormBox[
RowBox[{"0", "\[LessEqual]",
StyleBox["f", "TI"], "\[LessEqual]", "1", ",", "0", "\[LessEqual]",
StyleBox["g", "TI"], "\[LessEqual]", "1", ",",
SubscriptBox[
StyleBox["s", "TI"],
StyleBox["P", "TI"]], "-", "\[Sigma]", "\[GreaterEqual]", "1"}],
TraditionalForm], "errors" -> {}, "input" ->
"0\\leq f\\leq 1, 0\\leq g\\leq 1, s_P-\\sigma\\geq 1", "state" ->
"Boxes"],
"TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID->
"18c6cd3d-f888-49a9-b333-c9aca5885dd7"],
", and all parameters must be positive. See Table 1 of Hale ",
StyleBox["et al. ",
FontSlant->"Italic"],
"2021 (",
StyleBox["in review",
FontSlant->"Italic"],
") for parameter definitions. ",
"\n\nPlants are facultative mutualists: ",
Cell[BoxData[
FormBox[
RowBox[{
TemplateBox[Association["boxes" -> FormBox[
RowBox[{
SubscriptBox[
StyleBox["r", "TI"],
StyleBox["P", "TI"]], "\[LongEqual]",
SubscriptBox[
StyleBox["b", "TI"],
StyleBox["P", "TI"]],
StyleBox["f", "TI"],
StyleBox["g", "TI"], "-",
SubscriptBox[
StyleBox["d", "TI"],
StyleBox["P", "TI"]], ">", "0"}], TraditionalForm], "errors" -> {},
"input" -> "r_P=b_P f g-d_P > 0", "state" -> "Boxes"],
"TeXAssistantTemplate"], "."}], TraditionalForm]],ExpressionUUID->
"7d76e043-f56b-4b9f-9f9a-1a2a8ffc5bdc"],
"\nAnimals are obligate when ",
Cell[BoxData[
FormBox[
TemplateBox[Association["boxes" -> FormBox[
RowBox[{
SubscriptBox[
StyleBox["r", "TI"],
StyleBox["A", "TI"]], "\[LongEqual]",
SubscriptBox[
StyleBox["b", "TI"],
StyleBox["A", "TI"]], "-",
SubscriptBox[
StyleBox["d", "TI"],
StyleBox["A", "TI"]], "\[LessEqual]", "0"}], TraditionalForm],
"errors" -> {}, "input" -> "r_A=b_A-d_A \\leq 0", "state" -> "Boxes"],
"TeXAssistantTemplate"], TraditionalForm]],ExpressionUUID->
"c8d24b46-ba6a-47d1-b287-32f9f6d902ff"],
" or facultative otherwise.\n\nBelow, we create phase planes diagram to \
illustrate the unique, feasible dynamics for facultative plants paired with \
facultative or obligate animal dispersers. The first code chunk provides \
comments to explain the formatting commands. Code chunks can be run \
independent of each other."
}], "Text",
CellChangeTimes->{{3.8399693966646*^9, 3.839969397634138*^9}, {
3.8399751725798187`*^9, 3.8399751733632936`*^9}, {3.839975327526586*^9,
3.839975346395397*^9}, {3.8485865364775047`*^9, 3.848586576621031*^9}, {
3.84858668223778*^9, 3.848586683645639*^9}, {3.8485867326268263`*^9,
3.848586765993155*^9}, {3.848586825902781*^9, 3.8485868905646067`*^9},
3.8485869912143993`*^9, {3.848587023588108*^9, 3.848587060175576*^9}, {
3.848587142285027*^9, 3.8485871912891073`*^9}, {3.848587241369781*^9,
3.84858726264865*^9}, {3.848587305669641*^9, 3.848587370816436*^9}, {
3.848587405051107*^9, 3.8485875179049683`*^9}, {3.848587563659528*^9,
3.848587652777861*^9}, {3.848587782824483*^9, 3.8485877896029987`*^9}, {
3.8485880451768227`*^9, 3.848588087655161*^9}, 3.8485897718246803`*^9, {
3.84859232168638*^9, 3.848592323956799*^9}, 3.848592370307637*^9, {
3.848592514131565*^9,
3.848592515832755*^9}},ExpressionUUID->"e053aaae-93d5-493b-bf09-\
b5049689424a"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
RowBox[{"Facultative", " ", "Plants"}], ",", " ",
RowBox[{"Obligate", " ", "Animals"}]}], " ", "*)"}], " ",
"\[IndentingNewLine]",
RowBox[{
RowBox[{
"Print", "[", "\"\<Facultative Plants, Obligate Animals\>\"", " ", "]"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"Model", " ", "Parameters"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"bP", "=", "1"}], ";", " ",
RowBox[{"f", " ", "=", " ", "1"}], ";", " ",
RowBox[{"g", "=", "1"}], ";",
RowBox[{"sP", "=", "0.2"}], ";", " ",
RowBox[{"\[Sigma]", " ", "=", "0.2"}], ";",
RowBox[{"dP", "=", "0.3"}], ";"}], " ", "\[IndentingNewLine]",
RowBox[{
RowBox[{"a", "=", "1"}], ";",
RowBox[{"h", "=", "1"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"bA", "=", "1"}], ";", " ",
RowBox[{"\[CurlyEpsilon]", "=", "1.5"}], ";", " ",
RowBox[{"sA", "=", "0.15"}], ";", " ",
RowBox[{"dA", "=", "1.5"}], ";"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"Formatting", " ", "Parameters"}], " ", "*)"}],
"\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
"phase", " ", "plane", " ", "will", " ", "be", " ", "evaluated", " ",
"from", " ", "min", " ", "to", " ", "max"}], " ", "*)"}], " ",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"minP", "=", "0"}], ";",
RowBox[{"minA", "=", "0"}], ";"}], " ", "\[IndentingNewLine]",
RowBox[{
RowBox[{"maxP", "=", "8"}], ";",
RowBox[{"maxA", "=", "8"}], ";"}], " ", "\[IndentingNewLine]",
RowBox[{
RowBox[{"plantColor", " ", "=",
RowBox[{"RGBColor", "[",
RowBox[{
RowBox[{"65", "/", "256"}], ",",
RowBox[{"211", "/", "256"}], ",",
RowBox[{"129", "/", "256"}]}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"animalColor", " ", "=", " ", "Black"}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"pointSize", " ", "=", " ", "0.035"}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"imageSize", "=", "15"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"lineThickness", " ", "=", " ", "0.01"}], ";"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"Non", "-",
RowBox[{"trivial", " ", "nullcline", " ", "equations", " ", "for", " ",
RowBox[{"model", ".", " ", "Using"}], " ", "these", " ", "to", " ",
"plot", " ", "avoids", " ", "numerical", " ", "plotting", " ",
RowBox[{"issues", "."}]}]}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"P", ":", " ",
RowBox[{"x", "-", "axis"}]}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"nP", "[",
RowBox[{"P_", ",", "A_"}], "]"}], "=",
RowBox[{
RowBox[{"bP", "*", "f", "*", "g"}], "-",
RowBox[{
RowBox[{"(",
RowBox[{"sP", "-",
RowBox[{"\[Sigma]", "*",
FractionBox[
RowBox[{"a", "*", "A"}],
RowBox[{"1", "+",
RowBox[{"a", "*", "h", "*", "P"}], "+",
RowBox[{"a", "*", "A"}]}]]}]}], ")"}], "*", "P"}], "-", "dP"}]}],
";"}], " ", "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"A", ":", " ",
RowBox[{"y", "-", "axis"}]}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"nA", "[",
RowBox[{"P_", ",", "A_"}], "]"}], "=",
RowBox[{"bA", "+",
RowBox[{"\[CurlyEpsilon]", "*",
FractionBox[
RowBox[{"a", "*", "P"}],
RowBox[{"1", "+",
RowBox[{"a", "*", "h", "*", "P"}]}]]}], "-",
RowBox[{"sA", "*", "A"}], " ", "-", " ", "dA"}]}], ";"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"Stream", " ", "Plot"}], " ", "*)"}], " ", "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
RowBox[{
"creates", " ", "vector", " ", "field", " ", "in", " ", "a", " ",
"\"\<stream\>\"", " ", "format", " ", "with", " ", "auto"}], "-",
RowBox[{"sized", " ", "vectors"}]}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"sp", "=",
RowBox[{"Evaluate", "[",
RowBox[{"StreamPlot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"nP", "[",
RowBox[{"P", ",", "A"}], "]"}], ",",
RowBox[{"nA", "[",
RowBox[{"P", ",", "A"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"P", ",", "minP", ",", "maxP"}], "}"}], ",",
RowBox[{"{",
RowBox[{"A", ",", "minA", ",", "maxA"}], "}"}], ",",
RowBox[{"Axes", "\[Rule]", "True"}], ",",
RowBox[{"StreamColorFunction", "\[Rule]", "\"\<BlueGreenYellow\>\""}],
",", " ",
RowBox[{"StreamScale", "\[Rule]", "Large"}]}], "]"}], "]"}]}], ";"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"Non", "-",
RowBox[{"Trivial", " ", "Nullclines"}]}], " ", "*)"}],
"\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
"curves", " ", "in", " ", "which", " ", "the", " ", "differential", " ",
"equation", " ", "is", " ", "0", " ",
RowBox[{"(",
RowBox[{
"no", " ", "change", " ", "in", " ", "population", " ", "density"}],
")"}]}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"cpP", "=",
RowBox[{"ContourPlot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"nP", "[",
RowBox[{"P", ",", "A"}], "]"}], "\[Equal]", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"P", ",", "minP", ",", "maxP"}], "}"}], ",",
RowBox[{"{",
RowBox[{"A", ",", "minA", ",", "maxA"}], "}"}], ",", " ",
RowBox[{"ColorFunction", "\[Rule]",
RowBox[{"Function", "[",
RowBox[{
RowBox[{"{", "x", "}"}], ",", "plantColor"}], "]"}]}], ",",
RowBox[{"ContourStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Thickness", "[", "lineThickness", "]"}], "}"}]}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"cpA", "=",
RowBox[{"ContourPlot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"nA", "[",
RowBox[{"P", ",", "A"}], "]"}], "\[Equal]", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"P", ",", "minP", ",", "maxP"}], "}"}], ",",
RowBox[{"{",
RowBox[{"A", ",", "minA", ",", "maxA"}], "}"}], ",", " ",
RowBox[{"ColorFunction", "\[Rule]",
RowBox[{"Function", "[",
RowBox[{
RowBox[{"{", "x", "}"}], ",", "animalColor"}], "]"}]}], ",",
RowBox[{"ContourStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Thickness", "[", "lineThickness", "]"}], "}"}]}]}], "]"}]}],
";"}], "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"Trivial", " ", "Nullclines"}], " ", "*)"}],
"\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
"trivial", " ", "nullclines", " ", "in", " ", "the", " ", "sense", " ",
"that", " ", "the", " ", "change", " ", "in", " ", "population", " ",
"density", " ", "is", " ", "zero", " ", "because", " ", "the", " ",
"population", " ", "density", " ", "is", " ", "zero"}], " ", "*)"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"zeroP", "=",
RowBox[{"Line", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "minA"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "maxA"}], "}"}]}], "}"}], "]"}]}], ";"}], " ",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"trivialP", "=",
RowBox[{"Graphics", "[",
RowBox[{"{",
RowBox[{
RowBox[{"Thickness", "[", "lineThickness", "]"}], ",", "plantColor",
",", "zeroP"}], "}"}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"zeroA", "=",
RowBox[{"Line", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"minP", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"maxP", ",", "0"}], "}"}]}], "}"}], "]"}]}], ";"}], " ",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"trivialA", "=",
RowBox[{"Graphics", "[",
RowBox[{"{",
RowBox[{
RowBox[{"Thickness", "[", "lineThickness", "]"}], ",", "animalColor",
",", "zeroA"}], "}"}], "]"}]}], ";"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"Asymptotes", " ", "[",
RowBox[{"Saturation", " ", "Points"}], "]"}], " ", "*)"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"saturA", " ", "=", " ",
RowBox[{
RowBox[{"\[CurlyEpsilon]", "/",
RowBox[{"(",
RowBox[{"h", "*", "sA"}], ")"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"bA", "-", "dA"}], ")"}], "/",
RowBox[{"(", "sA", ")"}]}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"asympA", " ", "=", " ",
RowBox[{"Line", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"minA", ",", "saturA"}], "}"}], ",",
RowBox[{"{",
RowBox[{"maxA", ",", "saturA"}], "}"}]}], "}"}], "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"asympA", "=",
RowBox[{"Graphics", "[",
RowBox[{"{",
RowBox[{
RowBox[{"Thickness", "[", "lineThickness", "]"}], ",",
RowBox[{"Dashing", "[",
RowBox[{"{",
RowBox[{"0.03", ",", "0.05", ",", "0.03"}], "}"}], "]"}], ",",
"animalColor", ",", "asympA"}], "}"}], "]"}]}], ";"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
RowBox[{
RowBox[{"Trivial", " ", "&"}], " ", "Single"}], "-",
RowBox[{"Species", " ", "Equilibria"}]}], " ", "*)"}], " ",
"\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
RowBox[{"equation", " ", "for", " ", "plant"}], "-",
RowBox[{"only", " ", "equilibrium", " ",
RowBox[{"(",
RowBox[{
RowBox[{"i", ".", "e", "."}], ",", " ",
RowBox[{"when", " ", "animals", " ", "are", " ", "extinct"}]}],
")"}]}]}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"plantonlyeq", " ", "=", " ",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"bP", "*", "f", "*", "g"}], "-", "dP"}], ")"}], "/", "sP"}],
",", "0"}], "}"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
RowBox[{
"formats", " ", "the", " ", "point", " ", "color", " ", "and", " ",
"outline"}], ",", " ",
RowBox[{
"which", " ", "will", " ", "be", " ", "layered", " ", "on", " ", "top",
" ", "of", " ", "each", " ", "other", " ", "in", " ", "the", " ",
"final", " ", "pahse", " ", "plane"}]}], " ", "*)"}],
"\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
RowBox[{
"\"\<preplantonlypt\>\"", " ", "used", " ", "to", " ", "set", " ", "the",
" ", "color", " ", "of", " ", "the", " ",
RowBox[{"point", ":", " ",
RowBox[{
"use", " ", "white", " ", "for", " ", "saddle", " ", "points"}]}]}],
",", " ",
RowBox[{"black", " ", "for", " ", "stable", " ", "points"}], ",", " ",
RowBox[{
"and", " ", "red", " ", "for", " ", "unstable", " ", "points"}]}], " ",
"*)"}], " ", "\[IndentingNewLine]",
RowBox[{
RowBox[{"preplantonlypt", " ", "=", " ",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"{", "plantonlyeq", "}"}], ",", " ",
RowBox[{"PlotStyle", "->",
RowBox[{"{",
RowBox[{"White", ",", " ",
RowBox[{"PointSize", "[", "pointSize", "]"}]}], "}"}]}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
"\"\<plantonlypt\>\"", " ", "draws", " ", "the", " ", "black", " ",
"outline", " ", "image", " ", "for", " ", "the", " ", "point", " ",
"regardless", " ", "of", " ", "color"}], " ", "*)"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"plantonlypt", "=",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"{", "plantonlyeq", "}"}], ",",
RowBox[{"PlotMarkers", "->",
RowBox[{"Graphics", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Black", ",",
RowBox[{"Circle", "[", "]"}]}], "}"}], ",",
RowBox[{"ImageSize", "\[Rule]", "imageSize"}]}], "]"}]}]}], "]"}]}],
";"}], "\[IndentingNewLine]", " ", "\[IndentingNewLine]",
RowBox[{
RowBox[{"animalonlyeq", "=",
RowBox[{"{",
RowBox[{"0", ",",
FractionBox[
RowBox[{"bA", "-", "dA"}], "sA"]}], "}"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"preanimalonlypt", "=",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"{", "animalonlyeq", "}"}], ",",
RowBox[{"PlotStyle", "->",
RowBox[{"{",
RowBox[{"Red", ",", " ",
RowBox[{"PointSize", "[", "pointSize", "]"}]}], "}"}]}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"animalonlypt", "=",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"{", "animalonlyeq", "}"}], ",",
RowBox[{"PlotMarkers", "->",
RowBox[{"Graphics", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Black", ",", " ",
RowBox[{"Circle", "[", "]"}]}], "}"}], ",",
RowBox[{"ImageSize", "->", "imageSize"}]}], "]"}]}]}], "]"}]}],
";"}], "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{"trivialeq", "=",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"pretrivialpt", "=",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"{", "trivialeq", "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"White", ",",
RowBox[{"PointSize", "[", "pointSize", "]"}]}], "}"}]}]}], "]"}]}],
";"}], " ", "\[IndentingNewLine]",
RowBox[{
RowBox[{"trivialpt", "=",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"{", "trivialeq", "}"}], ",",
RowBox[{"PlotMarkers", "->",
RowBox[{"Graphics", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Black", ",",
RowBox[{"Circle", "[", "]"}]}], "}"}], ",",
RowBox[{"ImageSize", "->", "imageSize"}]}], "]"}]}]}], "]"}]}],
";"}], "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"Coexistence", " ", "Equilibria"}], " ", "*)"}], " ",
"\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
RowBox[{
RowBox[{
"Finds", " ", "the", " ", "equilibria", " ", "for", " ", "the", " ",
RowBox[{"model", ".", " ", "I"}], " ", "manually", " ", "assigned",
" ", "names"}], " ", "&"}], " ", "colors", " ", "for", " ", "unstable",
" ", "and", " ", "stable", " ",
RowBox[{"equilbiria", "."}]}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
RowBox[{
"coexistence", " ", "equilibria", " ", "are", " ", "where", " ", "the",
" ", "nontrivial", " ", "nullclines", " ", "are", " ", "both", " ",
"equal", " ", "to", " ", "zero", " ", "but", " ", "both", " ",
"species", " ", "densities", " ", "are"}], " ", ">", " ", "0"}], " ",
"*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"equilibria", "=", " ",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"nP", "[",
RowBox[{"P", ",", "A"}], "]"}], "\[Equal]", "0"}], "&&",
RowBox[{
RowBox[{"nA", "[",
RowBox[{"P", ",", "A"}], "]"}], "\[Equal]", "0"}], "&&",
RowBox[{"P", ">", "0"}], "&&",
RowBox[{"A", ">", "0"}]}], ",",
RowBox[{"{",
RowBox[{"P", ",", "A"}], "}"}]}], "]"}]}], ";"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"first", " ", "coexistence", " ", "equilibrium"}], " ", "*)"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"coexist1", "=",
RowBox[{"{",
RowBox[{
RowBox[{"P", "/.",
RowBox[{"equilibria", "[",
RowBox[{"[", "1", "]"}], "]"}]}], ",",
RowBox[{"A", "/.",
RowBox[{"equilibria", "[",
RowBox[{"[", "1", "]"}], "]"}]}]}], "}"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"formats", " ", "the", " ", "point", " ", "color", " ",
RowBox[{"(", "\"\<precoexistpt1\>\"", ")"}], " ", "and", " ", "outline",
" ",
RowBox[{"(", "\"\<coexistpt1\>\"", ")"}]}], " ", "*)"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"precoexistpt1", "=",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"{", "coexist1", "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Black", ",", " ",
RowBox[{"PointSize", "[", "0.035", "]"}]}], "}"}]}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"coexistpt1", "=",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"{", "coexist1", "}"}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"Graphics", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Black", ",",
RowBox[{"Circle", "[", "]"}]}], "}"}], ",",
RowBox[{"ImageSize", "\[Rule]", "imageSize"}]}], "]"}]}]}], "]"}]}],
";"}], "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
"print", " ", "the", " ", "equilbrium", " ", "values", " ", "for", " ",
"reference"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
"Print", "[",
"\"\<Equilibria: (only non-negative values are relevant)\>\"", " ", "]"}],
"\[IndentingNewLine]", "trivialeq", "\[IndentingNewLine]", "plantonlyeq",
"\[IndentingNewLine]", "animalonlyeq", "\[IndentingNewLine]", "equilibria",
" ", "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
"Show", " ", "all", " ", "the", " ", "graphics", " ", "items", " ",
"layered", " ", "on", " ", "top", " ", "of", " ", "each", " ", "other",
" ", "to", " ", "create", " ", "the", " ", "phase", " ", "plane"}], " ",
"*)"}], " ", "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
RowBox[{
RowBox[{
"asymptotes", " ", "are", " ", "excluded", " ", "for", " ",
"publication"}], "-",
RowBox[{"quality", " ", "images"}]}], ";", " ",
RowBox[{
"plot", " ", "is", " ", "padded", " ", "so", " ", "the", " ",
"extinction", " ", "equilibruim", " ", "is", " ", "visible"}]}], " ",
"*)"}], "\[IndentingNewLine]",
RowBox[{"Show", "[",
RowBox[{
"cpP", ",", " ", "cpA", ",", "trivialP", ",", "trivialA", ",", "sp", ",",
"pretrivialpt", ",", "trivialpt", ",", " ", "preanimalonlypt", ",",
"animalonlypt", ",", "preplantonlypt", ",", "plantonlypt", ",", " ",
"precoexistpt1", ",", " ", "coexistpt1", ",",
RowBox[{"PlotRangePadding", "->",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"maxP", "*", "0.025"}], ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"maxA", "*", "0.025"}], ",", "0"}], "}"}]}], "}"}]}]}],
"]"}]}]}]], "Input",
CellChangeTimes->{
3.82629471779862*^9, {3.826296214001648*^9, 3.826296216812093*^9},
3.8262970563033457`*^9, {3.826328667486898*^9, 3.826328737888439*^9}, {
3.826328788396576*^9, 3.826328814671093*^9}, {3.826328873651799*^9,
3.826328914564282*^9}, {3.826329269997003*^9, 3.8263294015343103`*^9}, {
3.826329902502068*^9, 3.8263299459272413`*^9}, {3.826389756377891*^9,
3.826389760676694*^9}, {3.826390267305723*^9, 3.826390267680641*^9}, {
3.826634702450171*^9, 3.826634716692027*^9}, {3.826665286137183*^9,
3.826665289530204*^9}, {3.827425843522986*^9, 3.827425858476077*^9}, {
3.82883401142977*^9, 3.828834011961804*^9}, {3.839795178012532*^9,
3.839795179440249*^9}, {3.8397952607944403`*^9, 3.8397952662605352`*^9}, {
3.839795341839731*^9, 3.8397953966966467`*^9}, {3.8397954322428637`*^9,
3.839795456624453*^9}, {3.83979549620266*^9, 3.839795667976078*^9}, {
3.839795724902124*^9, 3.8397957662827873`*^9}, {3.839795874156505*^9,
3.8397958759879*^9}, {3.8397959065581427`*^9, 3.839795920054678*^9}, {
3.8397961551391563`*^9, 3.839796157936805*^9}, {3.83979619590029*^9,
3.839796244998228*^9}, {3.839796461889089*^9, 3.83979655065829*^9}, {
3.839796618744227*^9, 3.839796629468042*^9}, {3.839796675381558*^9,
3.839796685403812*^9}, {3.839935567305284*^9, 3.839935623524851*^9}, {
3.83993566014876*^9, 3.839935691344105*^9}, {3.839935736076776*^9,
3.8399357751747217`*^9}, {3.839935807491312*^9, 3.839935846089437*^9}, {
3.8399358938166313`*^9, 3.839935975234644*^9}, {3.8399361106222982`*^9,
3.839936174762205*^9}, {3.839936214180015*^9, 3.8399362284003477`*^9}, {
3.839936271016569*^9, 3.83993629547057*^9}, {3.839936443658271*^9,
3.8399364987438717`*^9}, {3.83993652899996*^9, 3.839936529636197*^9}, {
3.839936565829644*^9, 3.839936578555708*^9}, {3.839936610489059*^9,
3.8399366575190372`*^9}, {3.839936698506103*^9, 3.8399367423251123`*^9}, {
3.839936840214672*^9, 3.839936860722993*^9}, {3.839936899367424*^9,
3.839936899525752*^9}, {3.839937038376655*^9, 3.83993729121076*^9}, {
3.839937512731814*^9, 3.839937588292447*^9}, {3.8399376439132023`*^9,
3.839937721252837*^9}, {3.839937761542128*^9, 3.839937775172413*^9}, {
3.8399381202776213`*^9, 3.8399381235363693`*^9}, {3.839940350405614*^9,
3.839940567184325*^9}, {3.839940600692669*^9, 3.839940799953607*^9},
3.839940839516955*^9, 3.839940961472117*^9, 3.839940992836815*^9, {
3.839968830742237*^9, 3.839968831253351*^9}, {3.83996969390543*^9,
3.8399697384016857`*^9}, {3.8399699080789824`*^9, 3.839969914094708*^9},
3.839970058915884*^9, {3.839970122900023*^9, 3.839970183915381*^9}, {
3.839971032789071*^9, 3.83997103924149*^9}, {3.839971085120326*^9,
3.83997120918167*^9}, {3.839971240005828*^9, 3.8399712625370083`*^9}, {
3.839971295141654*^9, 3.839971373391994*^9}, {3.839971766066513*^9,
3.83997180284326*^9}, {3.8399718924584093`*^9, 3.8399718946623077`*^9}, {
3.8399719697888823`*^9, 3.839971970000292*^9}, {3.839972017139318*^9,
3.839972057407913*^9}, {3.839975234812037*^9, 3.839975322237286*^9},
3.840014041129286*^9, {3.840014115588911*^9, 3.8400141188218*^9},
3.840014151291806*^9, {3.8400141963697968`*^9, 3.840014225247498*^9}, {
3.840015001817034*^9, 3.840015009334365*^9}, {3.8400151228215*^9,
3.840015184400148*^9}, {3.8423467466815643`*^9, 3.842346748522855*^9}, {
3.8485864255224867`*^9, 3.848586486069888*^9}, {3.848587670586753*^9,
3.848587709779151*^9}, {3.848587748659966*^9, 3.848587760581935*^9}, {
3.848587803940545*^9, 3.848587839297666*^9}, {3.84858789038898*^9,
3.8485880282635107`*^9}, {3.848588108009116*^9, 3.848588192625072*^9}, {
3.848588224832048*^9, 3.848588601054491*^9}, {3.848588640947624*^9,
3.8485888304155912`*^9}, {3.8485889009055557`*^9, 3.848588931318697*^9}, {
3.848588977113566*^9, 3.84858898281489*^9}, {3.8485914763513803`*^9,
3.848591547751772*^9}, {3.848592626818173*^9,
3.848592673033049*^9}},ExpressionUUID->"37585724-1059-4d19-8686-\
5cfb5ff93e46"],
Cell[CellGroupData[{
Cell[BoxData["\<\"Facultative Plants, Obligate Animals\"\>"], "Print",
CellChangeTimes->{{3.839975293057234*^9, 3.8399753111228733`*^9}, {
3.8400141877539253`*^9, 3.8400142256580276`*^9}, 3.840015010137127*^9, {
3.8400151294088163`*^9, 3.840015184839294*^9}, 3.8423467762245197`*^9,
3.848588602438818*^9, {3.848588641770144*^9, 3.848588699202379*^9}, {
3.8485887879023933`*^9, 3.848588799926042*^9}, 3.84858890425316*^9, {
3.8485889575685177`*^9, 3.848588983106414*^9}},
CellLabel->
"During evaluation of \
In[361]:=",ExpressionUUID->"f1380734-64da-4b08-889f-c05af4ff5014"],
Cell[BoxData["\<\"Equilibria: (only non-negative values are relevant)\"\>"], \
"Print",
CellChangeTimes->{{3.839975293057234*^9, 3.8399753111228733`*^9}, {
3.8400141877539253`*^9, 3.8400142256580276`*^9}, 3.840015010137127*^9, {
3.8400151294088163`*^9, 3.840015184839294*^9}, 3.8423467762245197`*^9,
3.848588602438818*^9, {3.848588641770144*^9, 3.848588699202379*^9}, {
3.8485887879023933`*^9, 3.848588799926042*^9}, 3.84858890425316*^9, {
3.8485889575685177`*^9, 3.848588983420196*^9}},
CellLabel->
"During evaluation of \
In[361]:=",ExpressionUUID->"42da4306-bc8d-48dd-b651-4ed507ff3102"]
}, Open ]],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}]], "Output",
CellChangeTimes->{{3.839975293221305*^9, 3.8399753112913837`*^9}, {
3.840014187922564*^9, 3.8400142258859797`*^9}, 3.840015010360917*^9, {
3.8400151296257057`*^9, 3.8400151850670652`*^9}, 3.84234677682143*^9,
3.8485886033359632`*^9, {3.8485886419738407`*^9, 3.8485886994859858`*^9}, {
3.848588788202484*^9, 3.848588800220766*^9}, 3.848588904509516*^9, {
3.84858895788345*^9, 3.848588983422326*^9}},
CellLabel->
"Out[398]=",ExpressionUUID->"f171c4fa-d926-4869-ac98-63724b280170"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"3.5`", ",", "0"}], "}"}]], "Output",
CellChangeTimes->{{3.839975293221305*^9, 3.8399753112913837`*^9}, {
3.840014187922564*^9, 3.8400142258859797`*^9}, 3.840015010360917*^9, {
3.8400151296257057`*^9, 3.8400151850670652`*^9}, 3.84234677682143*^9,
3.8485886033359632`*^9, {3.8485886419738407`*^9, 3.8485886994859858`*^9}, {
3.848588788202484*^9, 3.848588800220766*^9}, 3.848588904509516*^9, {
3.84858895788345*^9, 3.84858898342428*^9}},
CellLabel->
"Out[399]=",ExpressionUUID->"8cacef89-dd10-496a-9102-607154c7d96d"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"-", "3.3333333333333335`"}]}], "}"}]], "Output",
CellChangeTimes->{{3.839975293221305*^9, 3.8399753112913837`*^9}, {
3.840014187922564*^9, 3.8400142258859797`*^9}, 3.840015010360917*^9, {
3.8400151296257057`*^9, 3.8400151850670652`*^9}, 3.84234677682143*^9,
3.8485886033359632`*^9, {3.8485886419738407`*^9, 3.8485886994859858`*^9}, {
3.848588788202484*^9, 3.848588800220766*^9}, 3.848588904509516*^9, {
3.84858895788345*^9, 3.848588983426161*^9}},
CellLabel->
"Out[400]=",ExpressionUUID->"e6694b78-9d27-4c1c-9c92-0b37ccbf147e"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{
RowBox[{"P", "\[Rule]", "6.093749840522967`"}], ",",
RowBox[{"A", "\[Rule]", "5.256975005018958`"}]}], "}"}], "}"}]], "Output",\
CellChangeTimes->{{3.839975293221305*^9, 3.8399753112913837`*^9}, {
3.840014187922564*^9, 3.8400142258859797`*^9}, 3.840015010360917*^9, {
3.8400151296257057`*^9, 3.8400151850670652`*^9}, 3.84234677682143*^9,
3.8485886033359632`*^9, {3.8485886419738407`*^9, 3.8485886994859858`*^9}, {
3.848588788202484*^9, 3.848588800220766*^9}, 3.848588904509516*^9, {
3.84858895788345*^9, 3.848588983428082*^9}},
CellLabel->
"Out[401]=",ExpressionUUID->"3e85c531-e45d-46ba-bb27-0122c20d6f82"],
Cell[BoxData[
GraphicsBox[{{GraphicsComplexBox[CompressedData["
1:eJxFVAs0VWkU5laXcj3u++WVWpmmuTcSphjnaxqSNTTeRaOMJVNUNB7lNalL
lFUqLFNUMqHQ9Uo1k0dSaxLJY9VVMQ0xJtLkkdfF3E6X2Wuftc8+5//3/r9v
7/0v/WG/iz9FRUVll+L5aGdJ0YCKUqjXL2etrKShrDCest6impDIG4qj8jTh
Kpq8tuJxMzG29cLRzFJNnFm+WaEtxEPDoRr3ck0UTuwbd/6+hQh6UbH3RYUm
nMpknMyoFmKtV465V44WXrmIe1zEHUSEVUdJ0Nfayv1dxAnTBzy/ZG3s8DFZ
ncF9TcyQ59FGonT8uHS8lyBdSx2QYYv+IeSbw2jh3kp/bz/hk1WV7JmnA1Py
5R1R+83PxgU9OogYLNNIdHxPLA3246cuoSvzDRH1WxLLhph0HBf/1nf5xBBh
T/6g4/N/pYIxyjBh1z5t1x5DR6VzeLVz+ChBmBh2bSymg0z34oMSHx1WcZGn
hbQxYt2i1Xmveujg9G/0i/lxnDjs+7fPu1k6PsWdIE6TeRnISa7PT3aYImpN
aPdMvmWAk+DLS/CdIiRC6wvtjgwlnilirPWOuborAz+FWu+2TZsipqreTVVJ
GdiW7q/QGaL22aPGla8Zc/WCbrbBpXo6EzGrMsNlN1XwnIzDhJP7ZKv9FxQY
S7PvJBxgYszsryYJQUFxo6W4P5Sp5IOCILHenuIoJm4y86VcfwpoPeapz54w
UT2gWqbWsACzu88/zp1lglx+ZiE6h0R/DolYKBr1ko56LULEdFDJmmgWfJ6m
PIGUivL9AV2GCSwlX1RkypKyZEks3HMaqHMaoGIZGYeFuNAy1QqGGtbnH12f
382CbtsGvbY4dfRl99EuqbGV/C2GxCOuJM+aDV7mqbsTvCX4PTxve5gvGwff
Ot1+U7sEe+JX0tLj2UrcGng5PvaUnsrGZFS/ukOZBj7Vi42cK4RJhhcN2yRy
c6s3bJxOWtUh/E4TZlUWjNJZNub69pbk2eriNRxQxePvJde1IG13PpFCcBCx
oL4ubVALsf3c12HhHMz1affFtk6jsxw0N1JlDvY6uEHi5qDBLiYgZ0YHgxkC
mVUvB9oBPcZ1fDq8LXZeTHzDwVzfkfMzwsF2WyvXyK/oqOk0NS+25CJB0aVd
A3QkeFhERXtzMddHn3BysbiI4rflEAPHEj+Kws+sUSgDXvY26geucmExW9D9
GZcJQlTKTHjIne+LOJHsiEjGhWdS2takNKYSBxc2v9xqqVRl4VDr+c6RFTzk
h32wdQtkoTX46qCrOW++bh0pvSFiNx4ozw+mR/SysC9SsSGUB/nO7mb5Bja2
Crozsi7w5nkf+bXBtOYuD9V/aMUX8Tm4tzB7x/IPPJi+8mycLeTAqEndxpLK
n+etyNj/pKoWH1tk50Jm3nOwieSJD6nxhI2HmZKHbXyUf1z/iIsB1dFI50D+
PA61aRX3kyl8VO15qSEP5MGqadi6KYcPV3eFXJk7Fx8tjh1tjh08VHo4Pxh6
zJ/PExIic/F8y8cu27TEHYf5oJZO3vZbLpi30W256/xMBEgh6yHAgvSlPVEW
AuiVBRON3v9/Nzhn4daTKkD5HdMjSbEC3NCP73f+Uoi78QXn5acEaCfrIUTA
uiLTwFIBSh41R04/FUKeVZhu+UCAiiaxoQVbF5Lp1jXUQQGMSP514dZH8+ij
CZHLHb7KHdZFQaURa5OVEF91BeYGSvRw1qyksN9BiEASpx7OiV0zxa5CXPNr
LvRr1pvPW3d4Ny1jhT4SFdOZlSGE2rFg9WPF+hDeHx0ZvSJUzq8+Yu/LlsVW
C+EdbTe7VmQAcpw7hFAVPaGIUgyUvAsxTloDqJLXkq7yfjLEf+NQ24U=
"], {{}, {},
TagBox[
TooltipBox[
{RGBColor[0.368417, 0.506779, 0.709798], Thickness[0.01],
LineBox[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68,
69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85,
86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,
102},
VertexColors->Automatic]},
RowBox[{
RowBox[{
RowBox[{"0.7`", "\[VeryThinSpace]"}], "-",
RowBox[{
TagBox["P", HoldForm], " ",
RowBox[{"(",
RowBox[{
RowBox[{"0.2`", "\[VeryThinSpace]"}], "-",
FractionBox[
RowBox[{"0.2`", " ",
TagBox["A", HoldForm]}],
RowBox[{"1", "+",
TagBox["A", HoldForm], "+",
TagBox["P", HoldForm]}]]}], ")"}]}]}], "\[Equal]", "0"}]],
Annotation[#,
0.7 - HoldForm[$CellContext`P] (0.2 - 0.2 HoldForm[$CellContext`A]/(1 +
HoldForm[$CellContext`A] + HoldForm[$CellContext`P])) == 0,
"Tooltip"]& ]},
VertexColors->CompressedData["
1:eJxTTMoPSmViYGBIA2JmBihwuGAPphNeQWiFB/aj4qPio+Kj4qPio+Kj4qPi
o+L0EQcA/SejTg==
"]], {}}, {GraphicsComplexBox[CompressedData["
1:eJxdlXlcE9cWx5FNwp5kJmwJgrsoqEh9WIF7iq3sxKX6Hn2CNYKg7YOHGFks
aIW2QSK7QFGwgGgliOVZoVAUpHykVv0goIVgRExYwiJlC2HnJcOQP3o+Zz5n
7sydc3/nO+fOWHPCDgSpq6mpXVQcyrhkXWj5jJ6e3Z8X1oWmNpglncq5g/Sy
fEbP/tyFhl/eZ4qGKlEoV+dx5up3KH2th8Lr0a6KxzVC33dI9uaAlG3/GK2p
l7YGssTo3lEeXjzajFoPf/e59yYxOb8FHe2QpeB2YjT1y19ZrudbyOtiFJjh
s1MY2IqGvO5IbZgStD6k2K6kUYiOhKXf3hYgQa8r/qN0JIoU6evdlaAw/8wX
8bs6UVxFaK63fje6mb7m0tw3XagtVs6J+L5blffLqi11Mo0eJGqX865ZdaOA
M82fmPj3qOJ+/hFmxcsetJS+F7E9i/pXafUiVho94dfyPtX14hKlDaAMZV5K
H1pYVBgaRFVJ7nHfmvWR+gbRsxnuzjXrpGjgdNAFz4phVIvabCySpSTfEfTD
G2+qtV8/klU63hG6jKLfxoPa7qoPkHrHUJ+YcbNm/wDiJ0+UWreNqfJud493
cI+fQG7r9KxEUYOImJ4+gY5vg1Ru3CCSfjMb92PuBGr0aGxyKRlCcKOsZpPz
JPKUa2cmbn5P1jGJ+p9GcWfsh5HzVFe8kcsU2vdEXecfncPInRAwjWojvgh6
tf4vdLI9NGtD2rRKt4CofwbhNdcuZh8cIXXNInPcoFuWOIJkT2NqS+WzqNWp
LPhS9wjKzdfR3t8yhz4dOa0b4DuKQokH5lV1zi8StsRTMV4kx5nkmGxHuEKO
yV6FfKfose4n44hvup3TwFsBEUUSj80lE2RedfinbaUk4jMZevTx63MFFA3o
Z9W2pT6RkXo1YJkDJ1BpmtDacKy0YmESXWE13b5xQROcDO3FwyZykq8m6FUL
MPoZOWKHxbRe7dSEqKstvTl1U+jVn28t26Va0Myv/8PfYobkqw2lVbmCqtwZ
5DvU4Dv08UpY5lQbqymnilaCm8SXXcafQ7S5HSmMKzqQcWrsl3sJ8yR/Cpzv
z47rz15AiXntCqfAMgcCf4kuPLsVoHA1MDRSmh5k/XT1rWudGnQQ6+iBg/HJ
w7fiVoDjUx8TB0d9WObyYuPoDs85ffD5nmc+I1CH8hORPVqfGoBhkr+UtlYD
viSEGkCQy5jNhV4N2Nx7OPgGxxCWOYwOK80QRC1xXrO2WrD3LF3oE2gEXyua
4bSuNhD7YdEIUkJoJoyL2pBxsbtJsMUYlrnUJEzSOryMwWHUQvOUeCUk7ktY
jRUYQ3O63/xkjA5cpqGihiZjWOaAbU31GFWnwq857Ac5bAoQ5RpRgZcyTpm6
TiHnUUEQ+6xI/LsuvLWTBc6dpao4FCWuzw0ppMLzhrwP33vrQzarnJMopMLi
1zFO1w4aQIe8ZDrBhKaq265aWphkR4Nwh/Vv371WcIlK8yvYSQOerKDcxcEQ
0ggQNPBr4/q3cY2g2zFZ4phMU9W9tD9oIN/tZxvGNwZJDFbm9o4G6+yagtZe