forked from tarmiziAdam2005/Image-Signal-Processing
-
Notifications
You must be signed in to change notification settings - Fork 1
/
getConvMtx.m
56 lines (42 loc) · 1.49 KB
/
getConvMtx.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
function T = getConvMtx(H,m,n)
%This program was posted by stackoverflow user Stav and can be found
% here:
% http://stackoverflow.com/questions/26151265/matlab-2d-convolution-
% matrix-with-replication
% Copyright thus goes to the user Stav
% Input:
% H: blur kernel e.g: 5 x 5 gaussian kernel etc.
% m: row of resulting convolution matrix T.
% n: columns of the resulting convolution matrix T
% Output
% T: the convlution matrix
%This code is used to create the convolution matrix T like the predefined
%MATLAB function convmtx2. However, this code replicates the convolution
%matrix to get an M x M size matrix.
%This code may be used for linear inverse problems i.e. lnear models like
% y = Tx + w
% where y is the observed blury image T is the convolution matrix (this
% code), x the original clean signal (Image) to be estimated and w the
% noise.
vHalfKerSz = floor(size(H) / 2);
mInds = reshape(1:m*n, m, n);
mInds = padarray(mInds, vHalfKerSz, 'replicate');
Tcols = zeros(m*n*numel(H), 1);
Trows = zeros(m*n*numel(H), 1);
Tvals = zeros(m*n*numel(H), 1);
i = 0; p = 0;
for c = 1:n
for r = 1:m
p = p + 1;
mKerInds = mInds(r:r+size(H,1)-1, c:c+size(H,2)-1);
[U, ~, ic] = unique(mKerInds(:));
for k = 1:length(U)
i = i + 1;
Tcols(i) = U(k);
Trows(i) = p;
Tvals(i) = sum(H(mKerInds == U(k)));
end
end
end
T = sparse(Trows(1:i), Tcols(1:i), Tvals(1:i), m*n, m*n);
end