-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
59 lines (50 loc) · 2.12 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import pandas as pd
# from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import streamlit as st
new_mov=pd.read_csv(r"cleaned_movies.csv")
x=pd.read_csv(r"dirty_movies.csv")
z=pd.read_csv(r"movies.csv")
temp=TfidfVectorizer(max_features=5000,stop_words="english")
temp=temp.fit_transform(new_mov["tags"]).toarray()
sim=cosine_similarity(temp)
st.set_page_config(layout="wide")
st.title('Movie Recommendation')
with st.container():
st.write("-"*150)
left_col,right_col=st.columns((2,1))
with left_col:
global selected_movie
selected_movie = st.selectbox('Select a movie', new_mov['title'].values)
with right_col:
global nums
nums = st.selectbox('How many recommendations?', [x for x in range(1,11)])
if st.button('Get Similar Movie Recommendations'):
movie_id=new_mov[new_mov["title"]==selected_movie].index[0]
scores = list(enumerate(sim[movie_id]))
scores = sorted(scores, key=lambda x: x[1], reverse=True)[1:nums+1]
movies = [new_mov.iloc[score[0]]['title'] for score in scores]
test=st.tabs(movies)
for i in range(len(test)):
with test[i]:
st.subheader("GENRES:")
genres=x[x['title']==movies[i]]['genres'].values[0][1:-1].split(",")
for k in range(len(genres)):
if k==0:
genres[0]=genres[0][1:-1]
else:
genres[k]=genres[k][2:-1]
st.markdown(", ".join(genres[0:len(genres)]))
st.subheader("PLOT:")
st.markdown(x[x['title']==movies[i]]['overview'].values[0])
st.subheader("STAR CAST:")
cast=x[x['title']==movies[i]]['cast'].values[0][1:-1].split(",")
for k in range(3):
if k==0:
cast[0]=cast[0][1:-1]
else:
cast[k]=cast[k][2:-1]
st.markdown(", ".join(cast[0:3]))
st.subheader("CHECK ON WEBSITE:")
st.markdown(z[z['title']==movies[i]]['homepage'].values[0])