-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathRFC 5054.txt
1347 lines (751 loc) · 43.4 KB
/
RFC 5054.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Network Working Group D. Taylor
Request for Comments: 5054 Independent
Category: Informational T. Wu
Cisco
N. Mavrogiannopoulos
T. Perrin
Independent
November 2007
Using the Secure Remote Password (SRP) Protocol for TLS Authentication
Status of This Memo
This memo provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
memo is unlimited.
Abstract
This memo presents a technique for using the Secure Remote Password
protocol as an authentication method for the Transport Layer Security
protocol.
Taylor, et al. Informational [Page 1]
RFC 5054 Using SRP for TLS Authentication November 2007
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3
2. SRP Authentication in TLS . . . . . . . . . . . . . . . . . . 3
2.1. Notation and Terminology . . . . . . . . . . . . . . . . . 3
2.2. Handshake Protocol Overview . . . . . . . . . . . . . . . 4
2.3. Text Preparation . . . . . . . . . . . . . . . . . . . . . 5
2.4. SRP Verifier Creation . . . . . . . . . . . . . . . . . . 5
2.5. Changes to the Handshake Message Contents . . . . . . . . 5
2.5.1. Client Hello . . . . . . . . . . . . . . . . . . . . . 6
2.5.2. Server Certificate . . . . . . . . . . . . . . . . . . 7
2.5.3. Server Key Exchange . . . . . . . . . . . . . . . . . 7
2.5.4. Client Key Exchange . . . . . . . . . . . . . . . . . 8
2.6. Calculating the Premaster Secret . . . . . . . . . . . . . 8
2.7. Ciphersuite Definitions . . . . . . . . . . . . . . . . . 9
2.8. New Message Structures . . . . . . . . . . . . . . . . . . 9
2.8.1. Client Hello . . . . . . . . . . . . . . . . . . . . . 10
2.8.2. Server Key Exchange . . . . . . . . . . . . . . . . . 10
2.8.3. Client Key Exchange . . . . . . . . . . . . . . . . . 11
2.9. Error Alerts . . . . . . . . . . . . . . . . . . . . . . . 11
3. Security Considerations . . . . . . . . . . . . . . . . . . . 12
3.1. General Considerations for Implementors . . . . . . . . . 12
3.2. Accepting Group Parameters . . . . . . . . . . . . . . . . 12
3.3. Protocol Characteristics . . . . . . . . . . . . . . . . . 12
3.4. Hash Function Considerations . . . . . . . . . . . . . . . 13
4. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 13
5. References . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1. Normative References . . . . . . . . . . . . . . . . . . . 14
5.2. Informative References . . . . . . . . . . . . . . . . . . 15
Appendix A. SRP Group Parameters . . . . . . . . . . . . . . . . 16
Appendix B. SRP Test Vectors . . . . . . . . . . . . . . . . . . 21
Appendix C. Acknowledgements . . . . . . . . . . . . . . . . . . 22
Taylor, et al. Informational [Page 2]
RFC 5054 Using SRP for TLS Authentication November 2007
1. Introduction
At the time of writing TLS [TLS] uses public key certificates, pre-
shared keys, or Kerberos for authentication.
These authentication methods do not seem well suited to certain
applications now being adapted to use TLS ([IMAP], for example).
Given that many protocols are designed to use the user name and
password method of authentication, being able to safely use user
names and passwords provides an easier route to additional security.
SRP ([SRP], [SRP-6]) is an authentication method that allows the use
of user names and passwords over unencrypted channels without
revealing the password to an eavesdropper. SRP also supplies a
shared secret at the end of the authentication sequence that can be
used to generate encryption keys.
This document describes the use of the SRP authentication method for
TLS.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [REQ].
2. SRP Authentication in TLS
2.1. Notation and Terminology
The version of SRP used here is sometimes referred to as "SRP-6"
[SRP-6]. This version is a slight improvement over "SRP-3", which
was described in [SRP] and [SRP-RFC]. For convenience, this document
and [SRP-RFC] include the details necessary to implement SRP-6;
[SRP-6] is cited for informative purposes only.
Taylor, et al. Informational [Page 3]
RFC 5054 Using SRP for TLS Authentication November 2007
This document uses the variable names defined in [SRP-6]:
N, g: group parameters (prime and generator)
s: salt
B, b: server's public and private values
A, a: client's public and private values
I: user name (aka "identity")
P: password
v: verifier
k: SRP-6 multiplier
The | symbol indicates string concatenation, the ^ operator is the
exponentiation operation, and the % operator is the integer remainder
operation.
Conversion between integers and byte-strings assumes the most
significant bytes are stored first, as per [TLS] and [SRP-RFC]. In
the following text, if a conversion from integer to byte-string is
implicit, the most significant byte in the resultant byte-string MUST
be non-zero. If a conversion is explicitly specified with the
operator PAD(), the integer will first be implicitly converted, then
the resultant byte-string will be left-padded with zeros (if
necessary) until its length equals the implicitly-converted length of
N.
2.2. Handshake Protocol Overview
The advent of [SRP-6] allows the SRP protocol to be implemented using
the standard sequence of handshake messages defined in [TLS].
The parameters to various messages are given in the following
diagram.
Taylor, et al. Informational [Page 4]
RFC 5054 Using SRP for TLS Authentication November 2007
Client Server
Client Hello (I) -------->
Server Hello
Certificate*
Server Key Exchange (N, g, s, B)
<-------- Server Hello Done
Client Key Exchange (A) -------->
[Change cipher spec]
Finished -------->
[Change cipher spec]
<-------- Finished
Application Data <-------> Application Data
* Indicates an optional message that is not always sent.
Figure 1
2.3. Text Preparation
The user name and password strings SHALL be UTF-8 encoded Unicode,
prepared using the [SASLPREP] profile of [STRINGPREP].
2.4. SRP Verifier Creation
The verifier is calculated as described in Section 3 of [SRP-RFC].
We give the algorithm here for convenience.
The verifier (v) is computed based on the salt (s), user name (I),
password (P), and group parameters (N, g). The computation uses the
[SHA1] hash algorithm:
x = SHA1(s | SHA1(I | ":" | P))
v = g^x % N
2.5. Changes to the Handshake Message Contents
This section describes the changes to the TLS handshake message
contents when SRP is being used for authentication. The definitions
of the new message contents and the on-the-wire changes are given in
Section 2.8.
Taylor, et al. Informational [Page 5]
RFC 5054 Using SRP for TLS Authentication November 2007
2.5.1. Client Hello
The user name is appended to the standard client hello message using
the extension mechanism defined in [TLSEXT] (see Section 2.8.1).
This user name extension is henceforth called the "SRP extension".
The following subsections give details of its use.
2.5.1.1. Session Resumption
When a client attempts to resume a session that uses SRP
authentication, the client MUST include the SRP extension in the
client hello message, in case the server cannot or will not allow
session resumption, meaning a full handshake is required.
If the server does agree to resume an existing session, the server
MUST ignore the information in the SRP extension of the client hello
message, except for its inclusion in the finished message hashes.
This is to ensure that attackers cannot replace the authenticated
identity without supplying the proper authentication information.
2.5.1.2. Missing SRP Extension
The client may offer SRP cipher suites in the hello message but omit
the SRP extension. If the server would like to select an SRP cipher
suite in this case, the server SHOULD return a fatal
"unknown_psk_identity" alert (see Section 2.9) immediately after
processing the client hello message.
A client receiving this alert MAY choose to reconnect and resend the
hello message, this time with the SRP extension. This allows the
client to advertise that it supports SRP, but not have to prompt the
user for his user name and password, nor expose the user name in the
clear, unless necessary.
2.5.1.3. Unknown SRP User Name
If the server doesn't have a verifier for the user name in the SRP
extension, the server MAY abort the handshake with an
"unknown_psk_identity" alert (see Section 2.9). Alternatively, if
the server wishes to hide the fact that this user name doesn't have a
verifier, the server MAY simulate the protocol as if a verifier
existed, but then reject the client's finished message with a
"bad_record_mac" alert, as if the password was incorrect.
To simulate the existence of an entry for each user name, the server
must consistently return the same salt (s) and group (N, g) values
for the same user name. For example, the server could store a secret
"seed key" and then use HMAC-SHA1(seed_key, "salt" | user_name) to
Taylor, et al. Informational [Page 6]
RFC 5054 Using SRP for TLS Authentication November 2007
generate the salts [HMAC]. For B, the server can return a random
value between 1 and N-1 inclusive. However, the server should take
care to simulate computation delays. One way to do this is to
generate a fake verifier using the "seed key" approach, and then
proceed with the protocol as usual.
2.5.2. Server Certificate
The server MUST send a certificate if it agrees to an SRP cipher
suite that requires the server to provide additional authentication
in the form of a digital signature. See Section 2.7 for details of
which cipher suites defined in this document require a server
certificate to be sent.
2.5.3. Server Key Exchange
The server key exchange message contains the prime (N), the generator
(g), and the salt value (s) read from the SRP password file based on
the user name (I) received in the client hello extension.
The server key exchange message also contains the server's public
value (B). The server calculates this value as B = k*v + g^b % N,
where b is a random number that SHOULD be at least 256 bits in length
and k = SHA1(N | PAD(g)).
If the server has sent a certificate message, the server key exchange
message MUST be signed.
The group parameters (N, g) sent in this message MUST have N as a
safe prime (a prime of the form N=2q+1, where q is also prime). The
integers from 1 to N-1 will form a group under multiplication % N,
and g MUST be a generator of this group. In addition, the group
parameters MUST NOT be specially chosen to allow efficient
computation of discrete logarithms.
The SRP group parameters in Appendix A satisfy the above
requirements, so the client SHOULD accept any parameters from this
appendix that have large enough N values to meet her security
requirements.
The client MAY accept other group parameters from the server, if the
client has reason to believe that these parameters satisfy the above
requirements, and the parameters have large enough N values. For
example, if the parameters transmitted by the server match parameters
on a "known-good" list, the client may choose to accept them. See
Section 3 for additional security considerations relevant to the
acceptance of the group parameters.
Taylor, et al. Informational [Page 7]
RFC 5054 Using SRP for TLS Authentication November 2007
Group parameters that are not accepted via one of the above methods
MUST be rejected with an "insufficient_security" alert (see
Section 2.9).
The client MUST abort the handshake with an "illegal_parameter" alert
if B % N = 0.
2.5.4. Client Key Exchange
The client key exchange message carries the client's public value
(A). The client calculates this value as A = g^a % N, where a is a
random number that SHOULD be at least 256 bits in length.
The server MUST abort the handshake with an "illegal_parameter" alert
if A % N = 0.
2.6. Calculating the Premaster Secret
The premaster secret is calculated by the client as follows:
I, P = <read from user>
N, g, s, B = <read from server>
a = random()
A = g^a % N
u = SHA1(PAD(A) | PAD(B))
k = SHA1(N | PAD(g))
x = SHA1(s | SHA1(I | ":" | P))
<premaster secret> = (B - (k * g^x)) ^ (a + (u * x)) % N
The premaster secret is calculated by the server as follows:
N, g, s, v = <read from password file>
b = random()
k = SHA1(N | PAD(g))
B = k*v + g^b % N
A = <read from client>
u = SHA1(PAD(A) | PAD(B))
<premaster secret> = (A * v^u) ^ b % N
The finished messages perform the same function as the client and
server evidence messages (M1 and M2) specified in [SRP-RFC]. If
either the client or the server calculates an incorrect premaster
secret, the finished messages will fail to decrypt properly, and the
other party will return a "bad_record_mac" alert.
If a client application receives a "bad_record_mac" alert when
performing an SRP handshake, it should inform the user that the
entered user name and password are incorrect.
Taylor, et al. Informational [Page 8]
RFC 5054 Using SRP for TLS Authentication November 2007
2.7. Ciphersuite Definitions
The following cipher suites are added by this document. The usage of
Advanced Encryption Standard (AES) cipher suites is as defined in
[AESCIPH].
CipherSuite TLS_SRP_SHA_WITH_3DES_EDE_CBC_SHA = { 0xC0,0x1A };
CipherSuite TLS_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHA = { 0xC0,0x1B };
CipherSuite TLS_SRP_SHA_DSS_WITH_3DES_EDE_CBC_SHA = { 0xC0,0x1C };
CipherSuite TLS_SRP_SHA_WITH_AES_128_CBC_SHA = { 0xC0,0x1D };
CipherSuite TLS_SRP_SHA_RSA_WITH_AES_128_CBC_SHA = { 0xC0,0x1E };
CipherSuite TLS_SRP_SHA_DSS_WITH_AES_128_CBC_SHA = { 0xC0,0x1F };
CipherSuite TLS_SRP_SHA_WITH_AES_256_CBC_SHA = { 0xC0,0x20 };
CipherSuite TLS_SRP_SHA_RSA_WITH_AES_256_CBC_SHA = { 0xC0,0x21 };
CipherSuite TLS_SRP_SHA_DSS_WITH_AES_256_CBC_SHA = { 0xC0,0x22 };
Cipher suites that begin with TLS_SRP_SHA_RSA or TLS_SRP_SHA_DSS
require the server to send a certificate message containing a
certificate with the specified type of public key, and to sign the
server key exchange message using a matching private key.
Cipher suites that do not include a digital signature algorithm
identifier assume that the server is authenticated by its possession
of the SRP verifier.
Implementations conforming to this specification MUST implement the
TLS_SRP_SHA_WITH_3DES_EDE_CBC_SHA cipher suite, SHOULD implement the
TLS_SRP_SHA_WITH_AES_128_CBC_SHA and TLS_SRP_SHA_WITH_AES_256_CBC_SHA
cipher suites, and MAY implement the remaining cipher suites.
2.8. New Message Structures
This section shows the structure of the messages passed during a
handshake that uses SRP for authentication. The representation
language used is the same as that used in [TLS].
Taylor, et al. Informational [Page 9]
RFC 5054 Using SRP for TLS Authentication November 2007
2.8.1. Client Hello
A new extension "srp", with value 12, has been added to the
enumerated ExtensionType defined in [TLSEXT]. This value MUST be
used as the extension number for the SRP extension.
The "extension_data" field of the SRP extension SHALL contain:
opaque srp_I<1..2^8-1>;
where srp_I is the user name, encoded per Section 2.3.
2.8.2. Server Key Exchange
A new value, "srp", has been added to the enumerated
KeyExchangeAlgorithm originally defined in [TLS].
When the value of KeyExchangeAlgorithm is set to "srp", the server's
SRP parameters are sent in the server key exchange message, encoded
in a ServerSRPParams structure.
If a certificate is sent to the client, the server key exchange
message must be signed.
enum { rsa, diffie_hellman, srp } KeyExchangeAlgorithm;
struct {
select (KeyExchangeAlgorithm) {
case diffie_hellman:
ServerDHParams params;
Signature signed_params;
case rsa:
ServerRSAParams params;
Signature signed_params;
case srp: /* new entry */
ServerSRPParams params;
Signature signed_params;
};
} ServerKeyExchange;
struct {
opaque srp_N<1..2^16-1>;
opaque srp_g<1..2^16-1>;
opaque srp_s<1..2^8-1>;
opaque srp_B<1..2^16-1>;
} ServerSRPParams; /* SRP parameters */
Taylor, et al. Informational [Page 10]
RFC 5054 Using SRP for TLS Authentication November 2007
2.8.3. Client Key Exchange
When the value of KeyExchangeAlgorithm is set to "srp", the client's
public value (A) is sent in the client key exchange message, encoded
in a ClientSRPPublic structure.
struct {
select (KeyExchangeAlgorithm) {
case rsa: EncryptedPreMasterSecret;
case diffie_hellman: ClientDiffieHellmanPublic;
case srp: ClientSRPPublic; /* new entry */
} exchange_keys;
} ClientKeyExchange;
struct {
opaque srp_A<1..2^16-1>;
} ClientSRPPublic;
2.9. Error Alerts
This document introduces four new uses of alerts:
o "unknown_psk_identity" (115) - this alert MAY be sent by a server
that would like to select an offered SRP cipher suite, if the SRP
extension is absent from the client's hello message. This alert
is always fatal. See Section 2.5.1.2 for details.
o "unknown_psk_identity" (115) - this alert MAY be sent by a server
that receives an unknown user name. This alert is always fatal.
See Section 2.5.1.3 for details.
o "insufficient_security" (71) - this alert MUST be sent by a client
that receives unknown or untrusted (N, g) values. This alert is
always fatal. See Section 2.5.3 for details.
o "illegal_parameter" (47) - this alert MUST be sent by a client or
server that receives a key exchange message with A % N = 0 or B %
N = 0. This alert is always fatal. See Section 2.5.3 and
Section 2.5.4 and for details.
The "insufficient_security" and "illegal_parameter" alerts are
defined in [TLS]. The "unknown_psk_identity" alert is defined in
[PSK].
Taylor, et al. Informational [Page 11]
RFC 5054 Using SRP for TLS Authentication November 2007
3. Security Considerations
3.1. General Considerations for Implementors
The checks described in Section 2.5.3 and Section 2.5.4 on the
received values for A and B are CRUCIAL for security and MUST be
performed.
The private values a and b SHOULD be at least 256-bit random numbers,
to give approximately 128 bits of security against certain methods of
calculating discrete logarithms. See [TLS], Section D.1, for advice
on choosing cryptographically secure random numbers.
3.2. Accepting Group Parameters
An attacker who could calculate discrete logarithms % N could
compromise user passwords, and could also compromise the
confidentiality and integrity of TLS sessions. Clients MUST ensure
that the received parameter N is large enough to make calculating
discrete logarithms computationally infeasible.
An attacker may try to send a prime value N that is large enough to
be secure, but that has a special form for which the attacker can
more easily compute discrete logarithms (e.g., using the algorithm
discussed in [TRAPDOOR]). If the client executes the protocol using
such a prime, the client's password could be compromised. Because of
the difficulty of checking for such primes in real time, clients
SHOULD only accept group parameters that come from a trusted source,
such as those listed in Appendix A, or parameters configured locally
by a trusted administrator.
3.3. Protocol Characteristics
If an attacker learns a user's SRP verifier (e.g., by gaining access
to a server's password file), the attacker can masquerade as the real
server to that user, and can also attempt a dictionary attack to
recover that user's password.
An attacker could repeatedly contact an SRP server and try to guess a
legitimate user's password. Servers SHOULD take steps to prevent
this, such as limiting the rate of authentication attempts from a
particular IP address or against a particular user name.
The client's user name is sent in the clear in the Client Hello
message. To avoid sending the user name in the clear, the client
could first open a conventional anonymous or server-authenticated
connection, then renegotiate an SRP-authenticated connection with the
handshake protected by the first connection.
Taylor, et al. Informational [Page 12]
RFC 5054 Using SRP for TLS Authentication November 2007
If the client receives an "unknown_psk_identity" alert in response to
a client hello, this alert may have been inserted by an attacker.
The client should be careful about making any decisions, or forming
any conclusions, based on receiving this alert.
It is possible to choose a (user name, password) pair such that the
resulting verifier will also match other, related, (user name,
password) pairs. Thus, anyone using verifiers should be careful not
to assume that only a single (user name, password) pair matches the
verifier.
3.4. Hash Function Considerations
This protocol uses SHA-1 to derive several values:
o u prevents an attacker who learns a user's verifier from being
able to authenticate as that user (see [SRP-6]).
o k prevents an attacker who can select group parameters from being
able to launch a 2-for-1 guessing attack (see [SRP-6]).
o x contains the user's password mixed with a salt.
Cryptanalytic attacks against SHA-1 that only affect its collision-
resistance do not compromise these uses. If attacks against SHA-1
are discovered that do compromise these uses, new cipher suites
should be specified to use a different hash algorithm.
In this situation, clients could send a Client Hello message
containing new and/or old SRP cipher suites along with a single SRP
extension. The server could then select the appropriate cipher suite
based on the type of verifier it has stored for this user.
4. IANA Considerations
This document defines a new TLS extension "srp" (value 12), whose
value has been assigned from the TLS ExtensionType Registry defined
in [TLSEXT].
This document defines nine new cipher suites, whose values have been
assigned from the TLS Ciphersuite registry defined in [TLS].
CipherSuite TLS_SRP_SHA_WITH_3DES_EDE_CBC_SHA = { 0xC0,0x1A };
CipherSuite TLS_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHA = { 0xC0,0x1B };
CipherSuite TLS_SRP_SHA_DSS_WITH_3DES_EDE_CBC_SHA = { 0xC0,0x1C };
Taylor, et al. Informational [Page 13]
RFC 5054 Using SRP for TLS Authentication November 2007
CipherSuite TLS_SRP_SHA_WITH_AES_128_CBC_SHA = { 0xC0,0x1D };
CipherSuite TLS_SRP_SHA_RSA_WITH_AES_128_CBC_SHA = { 0xC0,0x1E };
CipherSuite TLS_SRP_SHA_DSS_WITH_AES_128_CBC_SHA = { 0xC0,0x1F };
CipherSuite TLS_SRP_SHA_WITH_AES_256_CBC_SHA = { 0xC0,0x20 };
CipherSuite TLS_SRP_SHA_RSA_WITH_AES_256_CBC_SHA = { 0xC0,0x21 };
CipherSuite TLS_SRP_SHA_DSS_WITH_AES_256_CBC_SHA = { 0xC0,0x22 };
5. References
5.1. Normative References
[REQ] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[TLS] Dierks, T. and E. Rescorla, "The TLS Protocol version
1.1", RFC 4346, April 2006.
[TLSEXT] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen,
J., and T. Wright, "Transport Layer Security (TLS)
Extensions", RFC 4366, April 2006.
[STRINGPREP] Hoffman, P. and M. Blanchet, "Preparation of
Internationalized Strings ("stringprep")", RFC 3454,
December 2002.
[SASLPREP] Zeilenga, K., "SASLprep: Stringprep profile for user
names and passwords", RFC 4013, February 2005.
[SRP-RFC] Wu, T., "The SRP Authentication and Key Exchange
System", RFC 2945, September 2000.
[SHA1] "Secure Hash Standard (SHS)", FIPS 180-2, August 2002.
[HMAC] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC:
Keyed-Hashing for Message Authentication", RFC 2104,
February 1997.
[AESCIPH] Chown, P., "Advanced Encryption Standard (AES)
Ciphersuites for Transport Layer Security (TLS)",
RFC 3268, June 2002.
Taylor, et al. Informational [Page 14]
RFC 5054 Using SRP for TLS Authentication November 2007
[PSK] Eronen, P. and H. Tschofenig, "Pre-Shared Key
Ciphersuites for Transport Layer Security (TLS)",
RFC 4279, December 2005.
[MODP] Kivinen, T. and M. Kojo, "More Modular Exponentiation
(MODP) Diffie-Hellman groups for Internet Key Exchange
(IKE)", RFC 3526, May 2003.
5.2. Informative References
[IMAP] Newman, C., "Using TLS with IMAP, POP3 and ACAP",
RFC 2595, June 1999.
[SRP-6] Wu, T., "SRP-6: Improvements and Refinements to the
Secure Remote Password Protocol", Submission to IEEE
P1363.2 working group, October 2002,
<http://grouper.ieee.org/groups/1363/>.
[SRP] Wu, T., "The Secure Remote Password Protocol",
Proceedings of the 1998 Internet Society Network and
Distributed System Security Symposium pp. 97-111,
March 1998.
[TRAPDOOR] Gordon, D., "Designing and Detecting Trapdoors for
Discrete Log Cryptosystems", Springer-Verlag Advances
in Cryptology - Crypto '92, pp. 66-75, 1993.
Taylor, et al. Informational [Page 15]
RFC 5054 Using SRP for TLS Authentication November 2007
Appendix A. SRP Group Parameters
The 1024-, 1536-, and 2048-bit groups are taken from software
developed by Tom Wu and Eugene Jhong for the Stanford SRP
distribution, and subsequently proven to be prime. The larger primes
are taken from [MODP], but generators have been calculated that are
primitive roots of N, unlike the generators in [MODP].
The 1024-bit and 1536-bit groups MUST be supported.
1. 1024-bit Group
The hexadecimal value for the prime is:
EEAF0AB9 ADB38DD6 9C33F80A FA8FC5E8 60726187 75FF3C0B 9EA2314C
9C256576 D674DF74 96EA81D3 383B4813 D692C6E0 E0D5D8E2 50B98BE4
8E495C1D 6089DAD1 5DC7D7B4 6154D6B6 CE8EF4AD 69B15D49 82559B29
7BCF1885 C529F566 660E57EC 68EDBC3C 05726CC0 2FD4CBF4 976EAA9A
FD5138FE 8376435B 9FC61D2F C0EB06E3
The generator is: 2.
2. 1536-bit Group
The hexadecimal value for the prime is:
9DEF3CAF B939277A B1F12A86 17A47BBB DBA51DF4 99AC4C80 BEEEA961
4B19CC4D 5F4F5F55 6E27CBDE 51C6A94B E4607A29 1558903B A0D0F843
80B655BB 9A22E8DC DF028A7C EC67F0D0 8134B1C8 B9798914 9B609E0B
E3BAB63D 47548381 DBC5B1FC 764E3F4B 53DD9DA1 158BFD3E 2B9C8CF5
6EDF0195 39349627 DB2FD53D 24B7C486 65772E43 7D6C7F8C E442734A
F7CCB7AE 837C264A E3A9BEB8 7F8A2FE9 B8B5292E 5A021FFF 5E91479E
8CE7A28C 2442C6F3 15180F93 499A234D CF76E3FE D135F9BB
The generator is: 2.
Taylor, et al. Informational [Page 16]
RFC 5054 Using SRP for TLS Authentication November 2007
3. 2048-bit Group
The hexadecimal value for the prime is:
AC6BDB41 324A9A9B F166DE5E 1389582F AF72B665 1987EE07 FC319294
3DB56050 A37329CB B4A099ED 8193E075 7767A13D D52312AB 4B03310D
CD7F48A9 DA04FD50 E8083969 EDB767B0 CF609517 9A163AB3 661A05FB
D5FAAAE8 2918A996 2F0B93B8 55F97993 EC975EEA A80D740A DBF4FF74
7359D041 D5C33EA7 1D281E44 6B14773B CA97B43A 23FB8016 76BD207A
436C6481 F1D2B907 8717461A 5B9D32E6 88F87748 544523B5 24B0D57D
5EA77A27 75D2ECFA 032CFBDB F52FB378 61602790 04E57AE6 AF874E73
03CE5329 9CCC041C 7BC308D8 2A5698F3 A8D0C382 71AE35F8 E9DBFBB6
94B5C803 D89F7AE4 35DE236D 525F5475 9B65E372 FCD68EF2 0FA7111F
9E4AFF73
The generator is: 2.
4. 3072-bit Group
This prime is: 2^3072 - 2^3008 - 1 + 2^64 * { [2^2942 pi] +
1690314 }
Its hexadecimal value is:
FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B
302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9
A637ED6B 0BFF5CB6 F406B7ED EE386BFB 5A899FA5 AE9F2411 7C4B1FE6
49286651 ECE45B3D C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8
FD24CF5F 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B E39E772C
180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9 DE2BCBF6 95581718
3995497C EA956AE5 15D22618 98FA0510 15728E5A 8AAAC42D AD33170D
04507A33 A85521AB DF1CBA64 ECFB8504 58DBEF0A 8AEA7157 5D060C7D
B3970F85 A6E1E4C7 ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226
1AD2EE6B F12FFA06 D98A0864 D8760273 3EC86A64 521F2B18 177B200C
BBE11757 7A615D6C 770988C0 BAD946E2 08E24FA0 74E5AB31 43DB5BFC
E0FD108E 4B82D120 A93AD2CA FFFFFFFF FFFFFFFF
The generator is: 5.
Taylor, et al. Informational [Page 17]
RFC 5054 Using SRP for TLS Authentication November 2007
5. 4096-bit Group
This prime is: 2^4096 - 2^4032 - 1 + 2^64 * { [2^3966 pi] +
240904 }
Its hexadecimal value is:
FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B
302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9
A637ED6B 0BFF5CB6 F406B7ED EE386BFB 5A899FA5 AE9F2411 7C4B1FE6
49286651 ECE45B3D C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8
FD24CF5F 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B E39E772C
180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9 DE2BCBF6 95581718
3995497C EA956AE5 15D22618 98FA0510 15728E5A 8AAAC42D AD33170D
04507A33 A85521AB DF1CBA64 ECFB8504 58DBEF0A 8AEA7157 5D060C7D
B3970F85 A6E1E4C7 ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226
1AD2EE6B F12FFA06 D98A0864 D8760273 3EC86A64 521F2B18 177B200C
BBE11757 7A615D6C 770988C0 BAD946E2 08E24FA0 74E5AB31 43DB5BFC
E0FD108E 4B82D120 A9210801 1A723C12 A787E6D7 88719A10 BDBA5B26
99C32718 6AF4E23C 1A946834 B6150BDA 2583E9CA 2AD44CE8 DBBBC2DB
04DE8EF9 2E8EFC14 1FBECAA6 287C5947 4E6BC05D 99B2964F A090C3A2
233BA186 515BE7ED 1F612970 CEE2D7AF B81BDD76 2170481C D0069127
D5B05AA9 93B4EA98 8D8FDDC1 86FFB7DC 90A6C08F 4DF435C9 34063199
FFFFFFFF FFFFFFFF
The generator is: 5.