-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsourcecode.toc
171 lines (171 loc) · 14.4 KB
/
sourcecode.toc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
\contentsline {chapter}{\numberline {第一章\hspace {.3em}}波函数}{1}{chapter.1}%
\contentsline {section}{\numberline {1.1}薛定谔方程}{1}{section.1.1}%
\contentsline {section}{\numberline {1.2}力学量的期望值和标准差}{3}{section.1.2}%
\contentsline {section}{\numberline {1.3}海森堡不确定性原理}{4}{section.1.3}%
\contentsline {section}{\numberline {1.4}概率流密度}{6}{section.1.4}%
\contentsline {chapter}{\numberline {第二章\hspace {.3em}}定态Schr\"{o}dinger方程}{7}{chapter.2}%
\contentsline {section}{\numberline {2.1}定态和分离变量法}{7}{section.2.1}%
\contentsline {section}{\numberline {2.2}一维无限深方势阱}{9}{section.2.2}%
\contentsline {section}{\numberline {2.3}简谐振子}{13}{section.2.3}%
\contentsline {subsection}{\numberline {2.3.1}代数方法}{14}{subsection.2.3.1}%
\contentsline {subsection}{\numberline {2.3.2}解析方法}{16}{subsection.2.3.2}%
\contentsline {subsection}{\numberline {2.3.3}*谐振子的相干态}{20}{subsection.2.3.3}%
\contentsline {subsubsection}{相干态的性质}{21}{subsubsection*.2}%
\contentsline {subsubsection}{相干态表象}{22}{subsubsection*.3}%
\contentsline {section}{\numberline {2.4}自由粒子}{23}{section.2.4}%
\contentsline {section}{\numberline {2.5}$\delta $函数势阱}{26}{section.2.5}%
\contentsline {subsection}{\numberline {2.5.1}束缚态和散射态}{26}{subsection.2.5.1}%
\contentsline {subsection}{\numberline {2.5.2}$\delta $函数势阱}{28}{subsection.2.5.2}%
\contentsline {section}{\numberline {2.6}有限深势阱}{36}{section.2.6}%
\contentsline {chapter}{\numberline {第三章\hspace {.3em}}形式化理论}{39}{chapter.3}%
\contentsline {section}{\numberline {3.1}可观测量}{39}{section.3.1}%
\contentsline {section}{\numberline {3.2}观察算符和算符的谱}{40}{section.3.2}%
\contentsline {section}{\numberline {3.3}广义概率诠释}{45}{section.3.3}%
\contentsline {subsubsection}{量纲分析}{46}{subsubsection*.4}%
\contentsline {section}{\numberline {3.4}不确定性原理}{49}{section.3.4}%
\contentsline {section}{\numberline {3.5}表象理论}{54}{section.3.5}%
\contentsline {section}{\numberline {3.6}薛定谔方程的分离变量}{58}{section.3.6}%
\contentsline {section}{\numberline {3.7}量子力学公理体系}{60}{section.3.7}%
\contentsline {chapter}{\numberline {第四章\hspace {.3em}}三维空间的量子力学}{63}{chapter.4}%
\contentsline {section}{\numberline {4.1}三维薛定谔方程求解}{63}{section.4.1}%
\contentsline {section}{\numberline {4.2}氢原子}{70}{section.4.2}%
\contentsline {subsection}{\numberline {4.2.1}波函数求解}{70}{subsection.4.2.1}%
\contentsline {subsection}{\numberline {4.2.2}氢原子光谱}{75}{subsection.4.2.2}%
\contentsline {section}{\numberline {4.3}角动量}{75}{section.4.3}%
\contentsline {section}{\numberline {4.4}自旋}{82}{section.4.4}%
\contentsline {subsection}{\numberline {4.4.1}自旋1/2}{83}{subsection.4.4.1}%
\contentsline {subsection}{\numberline {4.4.2}可观测量的相容性}{85}{subsection.4.4.2}%
\contentsline {subsection}{\numberline {4.4.3}磁场中的带电粒子}{86}{subsection.4.4.3}%
\contentsline {section}{\numberline {4.5}数学准备:张量积}{89}{section.4.5}%
\contentsline {section}{\numberline {4.6}角动量的合成}{91}{section.4.6}%
\contentsline {section}{\numberline {4.7}电磁相互作用}{97}{section.4.7}%
\contentsline {section}{\numberline {4.8}两个自旋体系的计算警示}{101}{section.4.8}%
\contentsline {chapter}{\numberline {第五章\hspace {.3em}}全同粒子}{104}{chapter.5}%
\contentsline {section}{\numberline {5.1}两个粒子的相互作用体系}{104}{section.5.1}%
\contentsline {subsection}{\numberline {5.1.1}玻色子和费米子}{106}{subsection.5.1.1}%
\contentsline {subsection}{\numberline {5.1.2}$N$个粒子的全同体系对称波函数构造}{108}{subsection.5.1.2}%
\contentsline {subsubsection}{对称化构造}{108}{subsubsection*.5}%
\contentsline {subsubsection}{反对称构造}{109}{subsubsection*.6}%
\contentsline {subsection}{\numberline {5.1.3}交换力}{109}{subsection.5.1.3}%
\contentsline {section}{\numberline {5.2}原子轨道近似求解}{113}{section.5.2}%
\contentsline {section}{\numberline {5.3}固体量子模型简介}{116}{section.5.3}%
\contentsline {subsection}{\numberline {5.3.1}自由电子气理论}{117}{subsection.5.3.1}%
\contentsline {subsection}{\numberline {5.3.2}价带结构}{120}{subsection.5.3.2}%
\contentsline {section}{\numberline {5.4}*二次量子化(施工中)}{123}{section.5.4}%
\contentsline {subsection}{\numberline {5.4.1}全同粒子希尔伯特空间}{123}{subsection.5.4.1}%
\contentsline {subsection}{\numberline {5.4.2}产生湮灭算符}{126}{subsection.5.4.2}%
\contentsline {subsubsection}{巨希尔伯特空间(Fock空间)}{126}{subsubsection*.7}%
\contentsline {subsubsection}{产生湮灭算符}{127}{subsubsection*.8}%
\contentsline {subsubsection}{占有数密度算符和总粒子数算符}{129}{subsubsection*.9}%
\contentsline {subsubsection}{算符的二次量子化形式}{129}{subsubsection*.10}%
\contentsline {subsubsection}{实例:位置表象}{131}{subsubsection*.11}%
\contentsline {subsubsection}{运动方程}{132}{subsubsection*.12}%
\contentsline {subsection}{\numberline {5.4.3}离散本征值}{133}{subsection.5.4.3}%
\contentsline {subsubsection}{箱归一化}{133}{subsubsection*.13}%
\contentsline {subsubsection}{离散本征值}{134}{subsubsection*.14}%
\contentsline {subsection}{\numberline {5.4.4}占有数表象}{134}{subsection.5.4.4}%
\contentsline {subsection}{\numberline {5.4.5}Hatree-Fock方法(施工中)}{135}{subsection.5.4.5}%
\contentsline {subsection}{\numberline {5.4.6}*密度泛函理论简介(施工中)}{135}{subsection.5.4.6}%
\contentsline {subsection}{\numberline {5.4.7}二次量子化与量子场论}{135}{subsection.5.4.7}%
\contentsline {chapter}{\numberline {第六章\hspace {.3em}}量子力学中的对称性}{136}{chapter.6}%
\contentsline {section}{\numberline {6.1}平移对称性}{138}{section.6.1}%
\contentsline {section}{\numberline {6.2}宇称守恒}{142}{section.6.2}%
\contentsline {section}{\numberline {6.3}旋转对称性}{144}{section.6.3}%
\contentsline {section}{\numberline {6.4}简并与对称(这部分要更改)}{147}{section.6.4}%
\contentsline {section}{\numberline {6.5}旋转选择定则}{150}{section.6.5}%
\contentsline {subsection}{\numberline {6.5.1}标量算符的选择定则}{151}{subsection.6.5.1}%
\contentsline {subsection}{\numberline {6.5.2}矢量算符的选择定则}{153}{subsection.6.5.2}%
\contentsline {section}{\numberline {6.6}时间平移对称性}{155}{section.6.6}%
\contentsline {subsection}{\numberline {6.6.1}薛定谔/海森堡绘景}{156}{subsection.6.6.1}%
\contentsline {subsubsection}{正则量子化}{161}{subsubsection*.15}%
\contentsline {subsection}{\numberline {6.6.2}能量守恒定律}{161}{subsection.6.6.2}%
\contentsline {section}{\numberline {6.7}*费曼路径积分}{163}{section.6.7}%
\contentsline {subsubsection}{相空间路径积分}{166}{subsubsection*.16}%
\contentsline {subsubsection}{自由粒子路径积分}{169}{subsubsection*.17}%
\contentsline {chapter}{\numberline {第七章\hspace {.3em}}定态微扰论}{172}{chapter.7}%
\contentsline {section}{\numberline {7.1}非简并微扰论}{172}{section.7.1}%
\contentsline {section}{\numberline {7.2}简并微扰论}{176}{section.7.2}%
\contentsline {section}{\numberline {7.3}氢原子的精细结构}{181}{section.7.3}%
\contentsline {subsubsection}{自旋轨道耦合势}{185}{subsubsection*.18}%
\contentsline {section}{\numberline {7.4}塞曼(Zeeman)效应}{185}{section.7.4}%
\contentsline {section}{\numberline {7.5}氢原子的超精细结构}{189}{section.7.5}%
\contentsline {section}{\numberline {7.6}任意阶微扰的一般性处理方法}{192}{section.7.6}%
\contentsline {chapter}{\numberline {第八章\hspace {.3em}}变分法}{197}{chapter.8}%
\contentsline {section}{\numberline {8.1}基本原理}{197}{section.8.1}%
\contentsline {section}{\numberline {8.2}氦原子的基态能量}{200}{section.8.2}%
\contentsline {section}{\numberline {8.3}$\ce {H2^+}$ 和 $\ce {H2}$}{202}{section.8.3}%
\contentsline {section}{\numberline {8.4}Born-Oppenheimer近似(施工中)}{207}{section.8.4}%
\contentsline {chapter}{\numberline {第九章\hspace {.3em}}WKB近似}{208}{chapter.9}%
\contentsline {section}{\numberline {9.1}基本原理}{208}{section.9.1}%
\contentsline {section}{\numberline {9.2}量子隧穿}{211}{section.9.2}%
\contentsline {section}{\numberline {9.3}连接公式}{213}{section.9.3}%
\contentsline {section}{\numberline {9.4}WKB近似与哈密顿雅可比方程}{222}{section.9.4}%
\contentsline {chapter}{\numberline {第十章\hspace {.3em}}含时问题(施工中)}{224}{chapter.10}%
\contentsline {section}{\numberline {10.1}相互作用绘景}{224}{section.10.1}%
\contentsline {section}{\numberline {10.2}双能级系统}{224}{section.10.2}%
\contentsline {section}{\numberline {10.3}含时微扰论}{224}{section.10.3}%
\contentsline {section}{\numberline {10.4}Applications}{224}{section.10.4}%
\contentsline {section}{\numberline {10.5}Fermi's Golden Rule and Berry Phase}{224}{section.10.5}%
\contentsline {chapter}{\numberline {第十一章\hspace {.3em}}散射理论}{225}{chapter.11}%
\contentsline {section}{\numberline {11.1}定态散射理论基本架构}{225}{section.11.1}%
\contentsline {subsection}{\numberline {11.1.1}分波法}{227}{subsection.11.1.1}%
\contentsline {subsection}{\numberline {11.1.2}Phase Shift}{230}{subsection.11.1.2}%
\contentsline {section}{\numberline {11.2}定态散射形式化理论}{234}{section.11.2}%
\contentsline {subsection}{\numberline {11.2.1}Lippmann-Schwinger方程}{234}{subsection.11.2.1}%
\contentsline {subsection}{\numberline {11.2.2}T,S and $\Omega $}{239}{subsection.11.2.2}%
\contentsline {subsection}{\numberline {11.2.3}Born近似}{242}{subsection.11.2.3}%
\contentsline {subsection}{\numberline {11.2.4}光学定理}{245}{subsection.11.2.4}%
\contentsline {section}{\numberline {11.3}*再谈分波法}{247}{section.11.3}%
\contentsline {subsection}{\numberline {11.3.1}无自旋情况}{247}{subsection.11.3.1}%
\contentsline {subsubsection}{分波方程}{249}{subsubsection*.19}%
\contentsline {subsubsection}{相移}{250}{subsubsection*.20}%
\contentsline {subsubsection}{近似计算例子}{250}{subsubsection*.21}%
\contentsline {subsubsection}{束缚态}{251}{subsubsection*.22}%
\contentsline {subsubsection}{共振散射}{252}{subsubsection*.23}%
\contentsline {subsection}{\numberline {11.3.2}自旋$\frac {1}{2}$情况}{252}{subsection.11.3.2}%
\contentsline {subsubsection}{与电磁散射类比}{255}{subsubsection*.24}%
\contentsline {section}{\numberline {11.4}含时散射理论(施工中)}{255}{section.11.4}%
\contentsline {chapter}{\numberline {第十二章\hspace {.3em}}*再论量子力学中的对称性(施工中)}{256}{chapter.12}%
\contentsline {chapter}{\numberline {第十三章\hspace {.3em}}量子信息与量子计算简介(施工中)}{257}{chapter.13}%
\contentsline {chapter}{\numberline {附录 A\hspace {.3em}}Vector Calculus}{258}{appendix.A}%
\contentsline {section}{\numberline {A.1}指标运算}{258}{section.A.1}%
\contentsline {section}{\numberline {A.2}梯度, 散度, 旋度}{259}{section.A.2}%
\contentsline {section}{\numberline {A.3}曲线坐标系}{261}{section.A.3}%
\contentsline {section}{\numberline {A.4}曲线积分和曲面积分}{265}{section.A.4}%
\contentsline {section}{\numberline {A.5}直角坐标里的张量}{267}{section.A.5}%
\contentsline {section}{\numberline {A.6}分部积分法}{273}{section.A.6}%
\contentsline {section}{\numberline {A.7}*外微分形式与斯托克斯定理(施工中)}{274}{section.A.7}%
\contentsline {chapter}{\numberline {附录 B\hspace {.3em}}Linear Algebra}{275}{appendix.B}%
\contentsline {section}{\numberline {B.1}向量空间}{275}{section.B.1}%
\contentsline {section}{\numberline {B.2}内积}{276}{section.B.2}%
\contentsline {section}{\numberline {B.3}波函数的空间}{279}{section.B.3}%
\contentsline {section}{\numberline {B.4}态空间和狄拉克符号}{281}{section.B.4}%
\contentsline {section}{\numberline {B.5}态空间表象和算子的矩阵表示}{286}{section.B.5}%
\contentsline {section}{\numberline {B.6}*线性算符的一些性质}{291}{section.B.6}%
\contentsline {section}{\numberline {B.7}*对偶空间和对偶映射}{294}{section.B.7}%
\contentsline {chapter}{\numberline {附录 C\hspace {.3em}}Gaussian Integral}{297}{appendix.C}%
\contentsline {chapter}{\numberline {附录 D\hspace {.3em}}Finit Group}{299}{appendix.D}%
\contentsline {section}{\numberline {D.1}群的基本结构}{299}{section.D.1}%
\contentsline {subsection}{\numberline {D.1.1}群的定义和一些基本定理}{299}{subsection.D.1.1}%
\contentsline {subsection}{\numberline {D.1.2}群的内部结构}{300}{subsection.D.1.2}%
\contentsline {subsection}{\numberline {D.1.3}同构与同态}{306}{subsection.D.1.3}%
\contentsline {subsection}{\numberline {D.1.4}群作用与变换群}{309}{subsection.D.1.4}%
\contentsline {subsection}{\numberline {D.1.5}直积与半直积}{310}{subsection.D.1.5}%
\contentsline {section}{\numberline {D.2}群表示论}{312}{section.D.2}%
\contentsline {subsection}{\numberline {D.2.1}群表示基本概念}{312}{subsection.D.2.1}%
\contentsline {subsection}{\numberline {D.2.2}群代数与正则表示}{316}{subsection.D.2.2}%
\contentsline {subsection}{\numberline {D.2.3}特征标理论及正交完备性定理}{319}{subsection.D.2.3}%
\contentsline {subsection}{\numberline {D.2.4}新表示的构成}{336}{subsection.D.2.4}%
\contentsline {subsubsection}{分导表示}{338}{subsubsection*.30}%
\contentsline {subsubsection}{用商群构造表示}{338}{subsubsection*.31}%
\contentsline {section}{\numberline {D.3}置换群}{339}{section.D.3}%
\contentsline {subsection}{\numberline {D.3.1}基本概念和性质}{339}{subsection.D.3.1}%
\contentsline {subsection}{\numberline {D.3.2}置换群的表示}{341}{subsection.D.3.2}%
\contentsline {subsection}{\numberline {D.3.3}钩子规则}{344}{subsection.D.3.3}%
\contentsline {subsection}{\numberline {D.3.4}置换群直积表示约化}{344}{subsection.D.3.4}%
\contentsline {subsubsection}{计算$S_{n+m}$在子群$S_n\otimes S_m$上的分导表示的约化}{346}{subsubsection*.32}%
\contentsline {section}{\numberline {D.4}转动群}{347}{section.D.4}%
\contentsline {subsection}{\numberline {D.4.1}$SO(3)$和$SU(2)$}{347}{subsection.D.4.1}%
\contentsline {subsection}{\numberline {D.4.2}转动群的不可约表示}{349}{subsection.D.4.2}%
\contentsline {subsection}{\numberline {D.4.3}*CG系数与角动量耦合}{354}{subsection.D.4.3}%
\contentsfinish