forked from YuxiXie/SelfEval-Guided-Decoding
-
Notifications
You must be signed in to change notification settings - Fork 0
/
generate_code.py
390 lines (335 loc) · 17.1 KB
/
generate_code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
import os
import argparse
from time import sleep
from datetime import datetime
from concurrent.futures import ProcessPoolExecutor as Pool
from utils.tool import *
from utils.prompt import *
from utils.generate import prompt_the_result
from utils.self_evaluate import get_line_confidence
from utils.dataset import jsonlines_load, merge_parallel_results
from utils.Beam import Beam
def parse_args():
'''
Parse Arguments
'''
parser = argparse.ArgumentParser()
##=== input data ===##
parser.add_argument("--dt_name", required=True, type=str,
choices=[
'gsm8k', 'aqua', 'svamp', 'asdiv', 'mawps', 'tabmwp', 'finqa',
'object_counting', 'repeat_copy', 'colored_object', 'penguin',
'date_understanding', 'sports', 'csqa', 'saycan', 'strategyqa',
'gsm8k_cot',
],
help='the dataset to test')
parser.add_argument("--input_file", required=True, type=str, help='input data file to generate code')
parser.add_argument("--output_dir", required=True, type=str, help='directory to save output results')
parser.add_argument("--start", default=0, type=int)
parser.add_argument("--end", default=-1, type=int)
##=== prompting hyperparameters ===##
parser.add_argument("--key", default="OPENAI_KEY", type=str)
parser.add_argument("--keys", default=[], nargs='+', type=str)
parser.add_argument("--temperature", default=0.5, type=float)
parser.add_argument("--max_tokens", default=256, type=int)
parser.add_argument("--top_p", default=1, type=int)
parser.add_argument("--n_samples", default=16, type=int, help='value of n for code generation sampling')
parser.add_argument("--logprobs", default=1, type=int)
parser.add_argument("--use_mini_n", default=False, action='store_true')
parser.add_argument("--mini_n_samples", default=8, type=int, help='value of n for mini code generation sampling (when token rate is limited)')
parser.add_argument("--sleep_time", default=5, type=int)
parser.add_argument("--max_stuck_time", default=30, type=int)
##=== running settings ===##
parser.add_argument("--chatgpt", default=False, action='store_true') # TODO: always False
parser.add_argument("--verbal", default=False, action='store_true')
parser.add_argument("--parallel_on_sub", default=False, action='store_true')
parser.add_argument("--parallel", default=False, action='store_true')
parser.add_argument("--n_jobs", default=20, type=int, help='number of jobs in parallel')
parser.add_argument("--resume", default=False, action='store_true')
parser.add_argument("--resume_dt_string", default="", type=str)
##=== beam search ===##
parser.add_argument("--beam_size", default=5, type=int)
parser.add_argument("--bs_temperature", default=0.0, type=float)
parser.add_argument("--bs_temperature_decay", default=-1.0, type=float)
parser.add_argument("--reject_sample", default=False, action='store_true')
parser.add_argument("--unbiased", default=False, action='store_true')
parser.add_argument("--bs_min_score", default=0.6, type=float)
parser.add_argument("--not_use_logprob", default=False, action='store_true')
parser.add_argument("--not_use_conf", default=False, action='store_true')
parser.add_argument("--conf_ratio", default=0, type=float)
parser.add_argument("--beam_search_max_step", default=16, type=int)
args = parser.parse_args()
if not len(args.keys):
args.keys = [args.key]
num_key = len(args.keys)
if args.parallel and num_key >= args.n_jobs:
num_key = args.n_jobs * (num_key // args.n_jobs)
args.keys = random.sample(args.keys, min(len(args.keys), num_key))
else:
args.keys = [args.key]
print('({} keys in total).'.format(len(args.keys)))
args.keys_used = {k: None for k in args.keys}
args.prompts = get_prompts(args.dt_name)
assert not args.chatgpt, "chatGPT is not supported for self-evaluation"
return args
def generate_one_step(_input):
'''
Generate one step of beam searching
[input]
- args: arguments
- init_instance
- keys
- num_of_lines
- prefix, prompt
- n
[output]
- prd: predicted step
- prd_p, prd_c: confidence scores
- ill: is last line? (bool)
- full_prd
- cmt
- raw_results
'''
args, init_instance, keys, num_of_lines, prefix, prompt, n = _input
ins, finished, _ = init_instance
if finished:
return (
# preds, pred_probs, pred_confs, is_last_line, full_preds, comments, raw_result
[None], [(1, 0)], [1], [True], [None], [None], [],
)
prd, prd_p, prd_c, ill, full_prd, cmt = [], [], [], [], [], []
##=== sampling to get the generated codes ===##
if len(ins) and args.verbal:
print(' [init code]\n{}'.format('\n'.join(ins)))
unique_result, raw_results = defaultdict(list), []
while not len(unique_result):
raw_result = prompt_the_result(args, f'{prompt}' + ('\n'.join(ins) + '\n' if ins else ''),
temperature=args.temperature, n=max(1, n - len(unique_result)),
max_tokens=args.max_tokens if ((num_of_lines == 1 and args.max_tokens >= 200) or args.max_tokens <= 128) else (args.max_tokens // 2), # not necessary to be too long for a following line
top_p=args.top_p, logprobs=args.logprobs, key=keys[0])
result = parse_api_result(raw_result)
# remove the duplicate code
for rst in result:
code, _, _probs = rst
n_code_steps = len(regex.split(r'[\n]+', code.rstrip()))
if not (n_code_steps * len(_probs)) or n_code_steps > len(_probs):
if not args.parallel: set_trace()
continue
lines, probs = split_code_with_probs(code, _probs, not_code=(args.prompts['type'] == 'commonsense'))
if not (len(lines) * len(probs)):
if not args.parallel: set_trace()
continue
raw_results.append((lines, probs))
if lines[0].strip():
unique_result[lines[0]].append((lines, probs))
##=== get ready the predictions ===##
code_list_batch = [(ins + [k]) for k in unique_result]
# get the confidence score in a batch
confs, comments = get_line_confidence(args, prefix, code_list_batch, [num_of_lines] * len(code_list_batch), keys[1], use_batch=True)
conf_results = {}
for k, conf, comment in zip(unique_result.keys(), confs, comments):
conf_results[k] = (conf, comment)
for k, v in unique_result.items():
# get the confidence score
conf, comment = conf_results[k]
# pack the results
if args.bs_temperature == 0: random.shuffle(v)
for l, p in v:
prd.append(k)
prd_p.append(p[0])
is_end = not ''.join(l[1:]).strip()
is_return = is_end or l[1].split('#')[0].rstrip() == ' return result'
ill.append(is_end or is_return)
if is_end: l, p = l[:1], p[:1]
prd_c.append(conf)
cmt.append(comment)
full_prd.append((l, p, conf, comment, num_of_lines)) # (lines, probs, conf, comment, step)
# only pick one of the duplicate codes (PS: duplicate version doesn't work -> UPDATE: work when unbiased)
if args.bs_temperature == 0: break
for i, rst in enumerate(raw_results):
k = rst[0][0]
raw_results[i] = raw_results[i] + conf_results.get(k, [])
return (prd, prd_p, prd_c, ill, full_prd, cmt, raw_results,)
def generate_code_beam_search(args, example, key=[], index=-1):
'''
Beam Searching
'''
start_time = time()
### ==================== Prepare Prompt ==================== ###
qu = example["question"]
prompt, prefix = get_prompt_inputs(args.dt_name, args.prompts, example)
if args.verbal:
print('====================')
print(f'Index: {index}\nQuestion: {qu}')
### ==================== Beam Searching ==================== ###
all_generated_codes = {}
code_gen_beam = Beam(args.beam_size, args.conf_ratio,
temperature=args.bs_temperature, temperature_decay=args.bs_temperature_decay,
reject_sample=args.reject_sample, min_score=args.bs_min_score,
unbiased=args.unbiased)
for num_of_lines in range(1, args.beam_search_max_step + 1):
init_instances = code_gen_beam.get_current_state(return_expl=True)
if args.verbal:
print('Beam Search: step {} - {}/{} activate instances'.format(num_of_lines,
len([x for x in init_instances if not x[1]]),
len(init_instances)))
preds, pred_probs, pred_confs, is_last_line, full_preds, comments = [], [], [], [], [], []
num_ins = len(init_instances)
n = args.n_samples if num_ins * args.n_samples > args.beam_size else (args.beam_size * 2 // num_ins) # TODO: magic number
# if args.parallel and num_ins > 1 and args.beam_size <= len(key):
if num_ins > 1 and args.beam_size <= len(key):
random.shuffle(key)
key_per_p = len(key) // num_ins
with Pool(num_ins) as subpool:
pred_rst = subpool.map(generate_one_step, zip(
[args] * num_ins, init_instances,
[split_keys(key[i*key_per_p:(i+1)*key_per_p]) for i in range(num_ins)],
[num_of_lines] * num_ins, [prefix] * num_ins, [prompt] * num_ins, [n] * num_ins
))
else:
pred_rst = []
for init_instance in init_instances:
pred_rst.append(generate_one_step((
args, init_instance, split_keys(key), num_of_lines, prefix, prompt, n
)))
all_generated_codes[num_of_lines], _idx_ins = [], 0
for prd, prd_p, prd_c, ill, full_prd, cmt, raw_rst in pred_rst:
preds.append(prd)
pred_probs.append(prd_p)
pred_confs.append(prd_c)
is_last_line.append(ill)
full_preds.append(full_prd)
comments.append(cmt)
all_generated_codes[num_of_lines].append({'init': init_instances[_idx_ins][0], 'rest': raw_rst})
_idx_ins += 1
done = code_gen_beam.advance(preds, pred_probs, pred_confs,
is_last_line, expl=comments)
if done: break
### ==================== Pack the Results ==================== ###
to_return = []
instances = code_gen_beam.get_current_state(return_expl=True)
ins_scores = code_gen_beam.get_step_scores()
for idx, ins in enumerate(instances):
ins, finished, cmt = ins
rest_code = []
if not finished or (not ins[-1].startswith(' return ') and args.prompts['type'] not in ['commonsense']):
i, j = code_gen_beam.all_traces[-1][idx]
try:
rest_code = full_preds[i][j][0][1:]
except:
if args.prompts['type'] not in ['commonsense']:
rest_code = [' return result']
length = code_gen_beam.all_length[-1][idx]
scores = ins_scores[idx]
to_return.append({
'finished': finished, 'length': length,
'score': [s[0] for s in scores], 'conf': [s[1] for s in scores], 'prob': [s[2] for s in scores],
'generated': ins + rest_code,
'conf_comments': cmt, 'info': None if finished else full_preds[i][j][1:],
})
if not to_return:
print(f'*** None return at index {index}')
dur = time() - start_time
return to_return, dur, {k:[] for k in all_generated_codes}
def main(argv):
args, examples, key, fname, sid = argv
prev_indexes = []
if os.path.exists(fname):
processed = jsonlines_load(fname)
prev_indexes += [x['index'] for x in processed if 'index' in x]
idx = sid
for example in tqdm(examples, desc=f' - (example {sid} starts) - '):
idx = example['index']
if idx in prev_indexes: continue
data = {'index': idx}
data.update(example)
result, dur, all_candidates = generate_code_beam_search(args, example, key=key, index=idx)
data.update({
'generated': result, 'all_generated': all_candidates, 'run_time': dur
})
with jsonlines.open(fname, mode='a') as writer:
writer.write(data)
for k in key: args.keys_used[k] = time()
print(f'Examples {sid} to {idx} done.')
if __name__ == "__main__":
args = parse_args()
### ==================== Load Input Data ==================== ###
data_test = jsonlines_load(args.input_file)
for i, _ in enumerate(data_test):
data_test[i]['index'] = i
### ==================== Prepare Output Filename ==================== ###
if args.resume:
dt_string = args.resume_dt_string
else:
now = datetime.now()
dt_string = now.strftime("%m_%d_%H_%M")
args.end = len(data_test) if args.end == -1 else args.end + 1
data_test = data_test[args.start:args.end]
print('Number of Examples: ', len(data_test))
nop = '_nop' if args.not_use_logprob else ''
noc = '_noc' if args.not_use_conf else ''
rjsbs = '_rjs' if args.reject_sample else ''
bs = f'_bs{args.beam_size}' if args.beam_size != 5 else ''
bstp = f'_bstp{args.bs_temperature}' if args.bs_temperature else ''
bstp += f'_decay{args.bs_temperature_decay}' if bstp and args.bs_temperature_decay >= 0 else ''
fn_prefix = f'{args.output_dir}/{args.dt_name}_sebs{rjsbs}_mc_pal{bs}{bstp}{nop}{noc}_tp{args.temperature}_n{args.n_samples}_s{args.start}_e{args.end}_{dt_string}'
if args.not_use_logprob:
args.conf_ratio = math.inf
if args.not_use_conf:
args.conf_ratio = -math.inf
assert not (args.not_use_logprob and args.not_use_conf), "cannot discard logprob & confidence scores at the same time"
### ==================== Run Generation ==================== ###
if args.parallel_on_sub:
merge_parallel_results(fn_prefix, 100) # TODO: magic number
sleep(args.sleep_time)
if os.path.exists(f'{fn_prefix}.jsonl'):
prev = jsonlines_load(f'{fn_prefix}.jsonl')
_indexes = [x['index'] for x in prev if 'index' in x]
data_test = [x for x in data_test if x['index'] not in _indexes]
fn_prefix += '_sub'
if args.parallel:
fname1 = f'{fn_prefix}_parallel_split0.jsonl'
if not os.path.exists(fname1):
with jsonlines.open(fname1, mode='w') as writer:
writer.write(args.prompts)
args_list = [args] * args.n_jobs
examples_list, fname_list, sid_list, key_list = [], [], [], []
interval = (len(data_test) + args.n_jobs - 1) // args.n_jobs
k_interval = len(args.keys) // args.n_jobs
for i in range(args.n_jobs):
sid = i * interval
examples_list.append(data_test[sid: sid + interval])
fname_list.append(f'{fn_prefix}_parallel_split{i}.jsonl')
sid_list.append(sid + args.start)
key_list.append(args.keys[i * k_interval: (i + 1) * k_interval])
with Pool(args.n_jobs) as pool:
results = pool.map(main, zip(args_list, examples_list, key_list, fname_list, sid_list))
print('Finished parallel running... {} results in total.'.format(len(list(results))))
sleep(args.sleep_time)
print('Merging result files...')
merge_parallel_results(fn_prefix, args.n_jobs)
else:
filename = f'{fn_prefix}.jsonl'
prev_indexes = []
if not os.path.exists(filename):
with jsonlines.open(filename, mode='w') as writer:
writer.write(args.prompts)
else:
prev = jsonlines_load(filename)
prev_indexes += [x['index'] for x in prev if 'index' in x]
highest_s = []
for example in tqdm(data_test, desc=f' - (example {args.start} starts) - '):
idx = example['index']
if idx in prev_indexes: continue
data = {'index': idx}
data.update(example)
result, dur, all_candidates = generate_code_beam_search(args, example, key=args.keys, index=idx)
data.update({
'generated': result, 'all_generated': all_candidates, 'run_time': dur
})
with jsonlines.open(filename, mode='a') as writer:
writer.write(data)
highest_s.append(nor_prod(result[0]['score']))
print('')
print('*** Avg Highest Score:', sum(highest_s) / len(highest_s))
print('All Done.')