-
Notifications
You must be signed in to change notification settings - Fork 116
/
Copy pathdist.py
419 lines (365 loc) · 13.6 KB
/
dist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
"""
This file contains primitives for multi-gpu communication.
This is useful when doing distributed training.
"""
from utils.lib import *
import torch
import torch.distributed as dist
import subprocess as sp
from .logger import LOGGER
def iter_tqdm(item):
if is_main_process():
return tqdm(item, ascii=True)
else:
return item
def dist_init(args, distributed=True):
if distributed:
if 'OMPI_COMM_WORLD_SIZE' in os.environ:
master_addr = os.environ.get("MASTER_ADDR", 'localhost')
master_port = os.environ.get("MASTER_PORT", 12475)
master_uri = f"tcp://{master_addr}:{master_port}" #if master_addr else 'localhost'
world_size = int(os.environ['OMPI_COMM_WORLD_SIZE'])
world_rank = int(os.environ['OMPI_COMM_WORLD_RANK'])
local_rank = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])
args.num_gpus = world_size
args.word_size = args.num_gpus
args.distributed = True
args.local_rank = local_rank
args.rank = world_rank
args.num_nodes = world_size // args.local_size
args.node_id = int(args.rank / args.local_size)
if args.distributed:
LOGGER.info(
f"Init distributed training on "
f"local rank {args.local_rank}, "
f"global rank {world_rank}")
torch.cuda.set_device(args.local_rank)
dist.init_process_group(
backend='nccl',
init_method=master_uri,
world_size=world_size,
rank=world_rank,
timeout=timedelta(hours=5), # 5 hrs
)
synchronize()
elif 'WORLD_SIZE' in os.environ:
args.num_gpus = int(
os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
args.word_size = args.num_gpus
local_rank = int(os.environ['LOCAL_RANK'])
rank = int(os.environ['RANK'])
args.distributed = True # args.num_gpus > 1
args.local_rank = local_rank
args.rank = rank
args.num_nodes = world_size // args.local_size # hardcoded
args.node_id = int(args.rank / args.local_size)
if args.distributed:
LOGGER.info(
f"Init distributed training on "
f"local rank {args.local_rank}")
torch.cuda.set_device(args.local_rank)
dist.init_process_group(
backend='nccl', init_method='env://',
timeout=timedelta(hours=5), # 5 hrs
)
synchronize()
else:
print("distributed training ... presumbly debug with 1 GPU")
args.num_gpus = 1
args.distributed = True
args.num_nodes = 1
args.word_size = args.num_gpus
args.local_rank = 0
args.rank = 0
args.num_nodes = 1
args.node_id = 0
os.environ['LOCAL_RANK'] = str(args.local_rank)
master_addr = os.environ.get("MASTER_ADDR", 'localhost')
master_port = os.environ.get("MASTER_PORT", 12475)
master_uri = f"tcp://{master_addr}:{master_port}" #if master_addr else 'localhost'
LOGGER.info(
f"Init distributed training on "
f"local rank {args.local_rank}")
torch.cuda.set_device(args.local_rank)
dist.init_process_group(
backend='nccl',
init_method=master_uri,
world_size=args.word_size,
rank=args.rank,
timeout=timedelta(hours=5), # 5 hrs
)
# raise ValueError(
# "Unable to init torch.distributed. Did not find WORLD_SIZE or OMPI_COMM_WORLD_SIZE in os.environ")
else:
print("no distributed training ...")
# no distributed training
args.num_gpus = torch.cuda.device_count()
args.word_size = args.num_gpus
args.num_nodes = 1
args.distributed = False
# Setting seed
set_seed(args)
def _select_seed_randomly(min_seed_value: int = 0, max_seed_value: int = 255) -> int:
return random.randint(min_seed_value, max_seed_value)
def validate_seed(seed):
max_seed_value = np.iinfo(np.uint32).max
min_seed_value = np.iinfo(np.uint32).min
if seed is None:
env_seed = os.environ.get("PL_GLOBAL_SEED")
if env_seed is None:
seed = _select_seed_randomly(min_seed_value, max_seed_value)
print(f"No seed found, seed set to {seed}")
else:
try:
seed = int(env_seed)
except ValueError:
seed = _select_seed_randomly(min_seed_value, max_seed_value)
print(f"Invalid seed found: {repr(env_seed)}, seed set to {seed}")
elif not isinstance(seed, int):
seed = int(seed)
if not (min_seed_value <= seed <= max_seed_value):
print(f"{seed} is not in bounds, numpy accepts from {min_seed_value} to {max_seed_value}")
seed = _select_seed_randomly(min_seed_value, max_seed_value)
return seed
def set_seed(args):
seed, n_gpu = args.seed, args.num_gpus
if args.do_train and args.fix_dist_seed:
this_seed = validate_seed((args.rank+1)* seed)
else:
this_seed = validate_seed(seed)
print(f"Using seed {this_seed} for rank {args.rank}")
random.seed(this_seed)
np.random.seed(this_seed)
torch.random.manual_seed(this_seed)
# torch.cuda.manual_seed(this_seed)
if args.rank == 0:
print(f"Using seed {this_seed} for torch.cuda")
torch.cuda.manual_seed_all(this_seed)
def get_world_size():
if 'WORLD_SIZE' in os.environ:
return int(os.environ['WORLD_SIZE'])
return int(os.environ.get('OMPI_COMM_WORLD_SIZE', '1'))
def get_rank():
if 'RANK' in os.environ:
return int(os.environ['RANK'])
return int(os.environ.get('OMPI_COMM_WORLD_RANK', '0'))
def get_local_rank():
if 'LOCAL_RANK' in os.environ:
return int(os.environ['LOCAL_RANK'])
return int(os.environ.get('OMPI_COMM_WORLD_LOCAL_RANK', '0'))
def get_local_size():
if 'LOCAL_SIZE' in os.environ:
return int(os.environ['LOCAL_SIZE'])
return int(os.environ.get('OMPI_COMM_WORLD_LOCAL_SIZE', '1'))
def is_main_process():
if get_rank()==0:
try:
if torch.distributed.get_rank()==0:
return True
else:
return False
except RuntimeError:
return True
else:
return False
# def is_main_process():
# return get_rank() == 0
def synchronize():
"""
Helper function to synchronize (barrier) among all processes when
using distributed training
"""
if not dist.is_available():
return
if not dist.is_initialized():
return
world_size = get_world_size()
if world_size == 1:
return
t = torch.randn((), device='cuda')
dist.all_reduce(t)
torch.cuda.synchronize()
return
# dist.barrier()
def gather_on_master(data):
"""Same as all_gather, but gathers data on master process only, using CPU.
Thus, this does not work with NCCL backend unless they add CPU support.
The memory consumption of this function is ~ 3x of data size. While in
principal, it should be ~2x, it's not easy to force Python to release
memory immediately and thus, peak memory usage could be up to 3x.
"""
world_size = get_world_size()
if world_size == 1:
return [data]
# serialized to a Tensor
buffer = pickle.dumps(data)
# trying to optimize memory, but in fact,
# it's not guaranteed to be released
del data
storage = torch.ByteStorage.from_buffer(buffer)
del buffer
tensor = torch.ByteTensor(storage)
# obtain Tensor size of each rank
local_size = torch.LongTensor([tensor.numel()])
size_list = [torch.LongTensor([0]) for _ in range(world_size)]
dist.all_gather(size_list, local_size)
size_list = [int(size.item()) for size in size_list]
max_size = max(size_list)
if local_size != max_size:
padding = torch.ByteTensor(size=(max_size - local_size,))
tensor = torch.cat((tensor, padding), dim=0)
del padding
if is_main_process():
tensor_list = []
for _ in size_list:
tensor_list.append(torch.ByteTensor(size=(max_size,)))
dist.gather(tensor, gather_list=tensor_list, dst=0)
del tensor
else:
dist.gather(tensor, gather_list=[], dst=0)
del tensor
return
data_list = []
for tensor in tensor_list:
buffer = tensor.cpu().numpy().tobytes()
del tensor
data_list.append(pickle.loads(buffer))
del buffer
return data_list
def all_gather(data):
"""
Run all_gather on arbitrary picklable data (not necessarily tensors)
Args:
data: any picklable object
Returns:
list[data]: list of data gathered from each rank
"""
world_size = get_world_size()
if world_size == 1:
return [data]
# serialized to a Tensor
buffer = pickle.dumps(data)
storage = torch.ByteStorage.from_buffer(buffer)
tensor = torch.ByteTensor(storage).to("cuda")
# obtain Tensor size of each rank
local_size = torch.LongTensor([tensor.numel()]).to("cuda")
size_list = [torch.LongTensor([0]).to("cuda") for _ in range(world_size)]
dist.all_gather(size_list, local_size)
size_list = [int(size.item()) for size in size_list]
max_size = max(size_list)
# receiving Tensor from all ranks
# we pad the tensor because torch all_gather does not support
# gathering tensors of different shapes
tensor_list = []
for _ in size_list:
tensor_list.append(torch.ByteTensor(size=(max_size,)).to("cuda"))
if local_size != max_size:
padding = torch.ByteTensor(size=(max_size - local_size,)).to("cuda")
tensor = torch.cat((tensor, padding), dim=0)
dist.all_gather(tensor_list, tensor)
data_list = []
for size, tensor in zip(size_list, tensor_list):
buffer = tensor.cpu().numpy().tobytes()[:size]
data_list.append(pickle.loads(buffer))
return data_list
def reduce_dict(input_dict, average=True):
"""
Args:
input_dict (dict): all the values will be reduced
average (bool): whether to do average or sum
Reduce the values in the dictionary from all processes
so that process with rank
0 has the averaged results. Returns a dict with the same fields as
input_dict, after reduction.
"""
world_size = get_world_size()
if world_size < 2:
return input_dict
with torch.no_grad():
names = []
values = []
# sort the keys so that they are consistent across processes
for k in sorted(input_dict.keys()):
names.append(k)
values.append(input_dict[k])
values = torch.stack(values, dim=0)
dist.reduce(values, dst=0)
if dist.get_rank() == 0 and average:
# only main process gets accumulated, so only divide by
# world_size in this case
values /= world_size
reduced_dict = {k: v for k, v in zip(names, values)}
return reduced_dict
class NoOp(object):
""" useful for distributed training No-Ops """
def __getattr__(self, name):
return self.noop
def noop(self, *args, **kwargs):
return
def decode_to_str(x):
try:
return x.decode('utf-8')
except UnicodeDecodeError:
return x.decode('latin-1')
def cmd_run(list_cmd,
return_output=False,
env=None,
working_dir=None,
stdin=sp.PIPE,
shell=False,
dry_run=False,
silent=False,
process_input=None,
stdout=None,
):
if not silent:
logging.info(
'start to cmd run: {}'.format(' '.join(map(str, list_cmd))))
if working_dir:
logging.info(working_dir)
# if we dont' set stdin as sp.PIPE, it will complain the stdin is not a tty
# device. Maybe, the reson is it is inside another process.
# if stdout=sp.PIPE, it will not print the result in the screen
e = os.environ.copy()
if 'SSH_AUTH_SOCK' in e:
del e['SSH_AUTH_SOCK']
if working_dir:
os.makedirs(working_dir, exist_ok=True)
if env:
for k in env:
e[k] = env[k]
if dry_run:
# we need the log result. Thus, we do not return at teh very beginning
return
if not return_output:
# if env is None:
# p = sp.Popen(list_cmd, stdin=sp.PIPE, cwd=working_dir)
# else:
p = sp.Popen(' '.join(list_cmd) if shell else list_cmd,
stdin=stdin,
env=e,
shell=shell,
stdout=stdout,
cwd=working_dir)
message = p.communicate(input=process_input)
if p.returncode != 0:
raise ValueError(message)
return message
else:
if shell:
message = sp.check_output(
' '.join(list_cmd),
env=e,
cwd=working_dir,
shell=True)
else:
message = sp.check_output(list_cmd,
env=e,
cwd=working_dir,
)
if not silent:
logging.info('finished the cmd run')
return decode_to_str(message)
def broadcast(data, src=0):
output = dist.broadcast(data, src=src)
return output