-
Notifications
You must be signed in to change notification settings - Fork 116
/
Copy pathload_save.py
338 lines (304 loc) · 13.6 KB
/
load_save.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
"""
saving utilities
"""
import json
import os
from os.path import dirname, exists, join, realpath
from apex import amp
from easydict import EasyDict as edict
from .basic_utils import is_jsonable, save_json, make_zipfile
import torch
from .logger import LOGGER
def save_training_meta(args):
# args is an EasyDict object, treat it the same as a normal dict
os.makedirs(join(args.output_dir, 'log'), exist_ok=True)
os.makedirs(join(args.output_dir, 'ckpt'), exist_ok=True)
# training args
save_args_path = join(args.output_dir, 'log', 'args.json')
save_json(args, save_args_path, save_pretty=True)
# model args
model_config = json.load(open(args.model_config))
save_model_config_path = join(args.output_dir, 'log', 'model_config.json')
save_json(model_config, save_model_config_path, save_pretty=True)
# save a copy of the codebase. !!!Do not store heavy file in your codebase when using it.
code_dir = dirname(dirname(dirname(realpath(__file__))))
code_zip_filename = os.path.join(args.output_dir, "code.zip")
LOGGER.info(f"Saving code from {code_dir} to {code_zip_filename}...")
make_zipfile(code_dir, code_zip_filename,
enclosing_dir="code",
exclude_dirs_substring="results",
exclude_dirs=["results", "debug_results", "__pycache__", "linjli"],
exclude_extensions=[".pyc", ".ipynb", ".swap"])
LOGGER.info(f"Saving code done.")
class TrainingSaver(object):
def __init__(self, output_dir):
self.output_dir = output_dir
self.max_save_load_trial = 10
def save_tokenizer(self, tokenizer):
tokenizer_dir = join(self.output_dir, 'tokenizer')
os.makedirs(tokenizer_dir, exist_ok=True)
if tokenizer is not None:
tokenizer.save_pretrained(tokenizer_dir)
def save_args(self, args):
arg_dir = join(self.output_dir, 'log')
os.makedirs(arg_dir, exist_ok=True)
save_args_path = join(arg_dir, 'args.json')
LOGGER.info(f"Training/evaluation parameters: {args}")
LOGGER.info(f"saving args to {save_args_path}")
temp_args = edict(vars(args))
for key, value in temp_args.items():
if not is_jsonable(value):
value = f'{value}'
temp_args[key] = value
save_json(temp_args, save_args_path, save_pretty=True, sort_keys=True)
def save_model(self, checkpoint_dir, step, model, optimizer=None):
os.makedirs(checkpoint_dir, exist_ok=True)
model_path = join(checkpoint_dir, 'model.bin')
model_to_save = model.module if hasattr(model, 'module') else model
state_dict = {k: v.cpu() if isinstance(v, torch.Tensor) else v
for k, v in model_to_save.state_dict().items()}
# with retrial, as azure blob fails occasionally.
save_trial = 0
while save_trial < self.max_save_load_trial:
exception_msg = ''
try:
LOGGER.info(f"ModelSaver save trial NO. {save_trial}")
torch.save(state_dict, model_path)
if optimizer is not None:
optimizer_state_dict = {
k: v.cpu() if isinstance(v, torch.Tensor) else v
for k, v in optimizer.state_dict().items()}
dump = {'step': step, 'optimizer': optimizer_state_dict}
torch.save(
dump,
f'{checkpoint_dir}/optmizer_state.bin')
LOGGER.info(f"Save checkpoint to {checkpoint_dir}")
break
except Exception as e:
exception_msg = e
save_trial += 1
else:
LOGGER.info(
f"Failed to save checkpoint after {self.max_save_load_trial} trails, "
f"exception msg: {exception_msg}.")
return
def load_state_dict_with_mismatch(model, loaded_state_dict_or_path):
"""operated in-place, no need to return `model`"""
if isinstance(loaded_state_dict_or_path, str):
loaded_state_dict = torch.load(
loaded_state_dict_or_path, map_location="cpu")
else:
loaded_state_dict = loaded_state_dict_or_path
model_keys = set([k for k in list(model.state_dict().keys())])
load_keys = set(loaded_state_dict.keys())
toload = {}
mismatched_shape_keys = []
for k in model_keys:
if k in load_keys:
if model.state_dict()[k].shape != loaded_state_dict[k].shape:
mismatched_shape_keys.append(k)
else:
toload[k] = loaded_state_dict[k]
LOGGER.info("You can ignore the keys with `num_batches_tracked` or from task heads")
LOGGER.info("Keys in loaded but not in model:")
diff_keys = load_keys.difference(model_keys)
LOGGER.info(f"In total {len(diff_keys)}, {sorted(diff_keys)}")
LOGGER.info("Keys in model but not in loaded:")
diff_keys = model_keys.difference(load_keys)
LOGGER.info(f"In total {len(diff_keys)}, {sorted(diff_keys)}")
LOGGER.info("Keys in model and loaded, but shape mismatched:")
LOGGER.info(f"In total {len(mismatched_shape_keys)}, {sorted(mismatched_shape_keys)}")
model.load_state_dict(toload, strict=False)
def compare_dict_difference(dict1, dict2, dict1_name="dict1",
dict2_name="dict2",
print_value_diff=True, verbose=False,
exclude_keys=()):
"""
Args:
dict1:
dict2:
dict1_name:
dict2_name:
print_value_diff: bool, output dict value difference within shared keys
for dict1 and dict2. In effect only when verbose == True
verbose:
"""
exclude_keys = set(exclude_keys)
keys1 = set(dict1.keys()).difference(exclude_keys)
keys2 = set(dict2.keys()).difference(exclude_keys)
shared_keys = keys1.intersection(keys2)
keys1_unique = keys1.difference(shared_keys)
keys2_unique = keys2.difference(shared_keys)
key_diff_list = list(keys1_unique) + list(keys2_unique)
# value difference in the shared keys in dict1 and dict2
value_diff_dict = {}
for k in shared_keys:
if dict1[k] != dict2[k]:
value_diff_dict[k] = [(dict1_name, dict1[k]), (dict2_name, dict2[k])]
if len(value_diff_dict) == 0 and len(key_diff_list) == 0:
return True
def print_value_diff():
if verbose and print_value_diff:
LOGGER.info("=" * 30 + "value difference")
LOGGER.info(f"{json.dumps(value_diff_dict, indent=4)}")
if len(value_diff_dict) > 0 and len(key_diff_list) == 0:
# OK
print_value_diff()
return True
if verbose:
LOGGER.info("=" * 30 + "key difference")
LOGGER.info(f"keys in {dict1_name} but not in {dict2_name}: "
f"total {len(keys1_unique)}, {sorted(keys1_unique)}")
LOGGER.info(f"keys in {dict2_name} but not in {dict1_name}: "
f"total {len(keys2_unique)}, {sorted(keys2_unique)}")
return False
def _to_cuda(state):
""" usually load from cpu checkpoint but need to load to cuda """
if isinstance(state, torch.Tensor):
ret = state.cuda() # assume propoerly set py torch.cuda.set_device
if 'Half' in state.type():
ret = ret.float() # apex O2 requires it
return ret
elif isinstance(state, list):
new_state = [_to_cuda(t) for t in state]
elif isinstance(state, tuple):
new_state = tuple(_to_cuda(t) for t in state)
elif isinstance(state, dict):
new_state = {n: _to_cuda(t) for n, t in state.items()}
else:
return state
return new_state
def _to_cpu(state):
""" store in cpu to avoid GPU0 device, fp16 to save space """
if isinstance(state, torch.Tensor):
ret = state.cpu()
if 'Float' in state.type():
ret = ret.half()
return ret
elif isinstance(state, list):
new_state = [_to_cpu(t) for t in state]
elif isinstance(state, tuple):
new_state = tuple(_to_cpu(t) for t in state)
elif isinstance(state, dict):
new_state = {n: _to_cpu(t) for n, t in state.items()}
else:
return state
return new_state
class TrainingRestorer(object):
def __init__(self, args, model, optimizer):
if exists(f"{args.output_dir}/log/args.json"):
restore_args = json.load(
open(f'{args.output_dir}/log/args.json', 'r'))
restore_args_path = join(
args.output_dir, 'log',
'restore_args.json')
temp_args = edict(vars(restore_args))
for key, value in temp_args.items():
if not is_jsonable(value):
value = f'{value}'
temp_args[key] = value
save_json(
temp_args, restore_args_path,
save_pretty=True, sort_keys=True)
assert compare_dict_difference(
args, restore_args, dict1_name="current_args",
dict2_name="restore_args",
print_value_diff=True, verbose=True,
exclude_keys=('local_rank'))
# keep 2 checkpoints in case of corrupted
self.save_path = f'{args.output_dir}/restore.pt'
self.backup_path = f'{args.output_dir}/restore_backup.pt'
self.model = model
self.optimizer = optimizer
self.min_restore_steps = 20
self.restorer_save_step = max(
self.min_restore_steps, int(args.restore_ratio * args.max_global_step))
# since saving to or loading from azure blob fails sometimes
self.max_save_load_trial = 10
self.amp = args.mixed_precision_method == "apex"
self.deepspeed = args.mixed_precision_method == "deepspeed" and args.restore_deepspeed_ckpt
if self.deepspeed:
self.save_path = f'{args.output_dir}/deepspeed_restore'
os.makedirs(self.save_path, exist_ok=True)
self.backup_path = f'{args.output_dir}/deepspeed_restore_backup'
os.makedirs(self.backup_path, exist_ok=True)
self.restore_at_init()
def restore_at_init(self):
if self.save_path.endswith(".pt"):
save_path = self.save_path
backup_path = self.backup_path
else:
# deepspeed
save_path = join(self.save_path, "restore_ckpt.pt")
backup_path = join(self.backup_path, "restore_ckpt.pt")
if exists(save_path) or exists(backup_path):
LOGGER.info('found previous checkpoint. try to resume...')
exception_msg = ''
# with retrial, as azure blob fails occasionally.
restore_trial = 0
while restore_trial < self.max_save_load_trial:
LOGGER.info(f"TrainingRestorer restore trial NO. {restore_trial}")
# try:
self.restore()
LOGGER.info(f"TrainingRestorer restore from global_step {self.global_step}")
break
# except Exception as e:
# exception_msg = e
# restore_trial += 1
# else:
# LOGGER.info(
# f"TrainingRestorer restore failed after {self.max_save_load_trial} trails, "
# f"exception msg: {exception_msg}.")
else:
self.global_step = 0
def step(self):
self.global_step += 1
if self.global_step % self.restorer_save_step == 0:
# with retrial, as azure blob fails occasionally.
save_trial = 0
while save_trial < self.max_save_load_trial:
LOGGER.info(f"TrainingRestorer save trial NO. {save_trial}")
try:
self.save()
break
except Exception as e:
save_trial += 1
def save(self):
checkpoint = {'global_step': self.global_step}
if not self.deepspeed:
# model_to_save = self.model.module if hasattr(self.model, 'module') else self.model
checkpoint['model_state_dict'] = _to_cpu(self.model.state_dict())
checkpoint['optim_state_dict'] = _to_cpu(self.optimizer.state_dict())
if self.amp:
checkpoint['amp_state_dict'] = amp.state_dict()
if exists(self.save_path):
os.rename(self.save_path, self.backup_path)
torch.save(checkpoint, self.save_path)
else:
# deepspeed, not efficient
if exists(self.save_path):
os.rename(self.save_path, self.backup_path)
else:
self.model.save_checkpoint(self.save_path)
torch.save(checkpoint, join(self.save_path, "restore_ckpt.pt"))
def restore(self):
if not self.deepspeed:
try:
checkpoint = torch.load(self.save_path)
except Exception:
checkpoint = torch.load(self.backup_path)
self.model.load_state_dict(_to_cuda(checkpoint['model_state_dict']))
self.optimizer.load_state_dict(
_to_cuda(checkpoint['optim_state_dict']))
if self.amp:
amp.load_state_dict(checkpoint['amp_state_dict'])
else:
# deepspeed, not efficient
try:
checkpoint = torch.load(join(self.save_path, "restore_ckpt.pt"))
self.model.load_checkpoint(self.save_path)
except Exception:
checkpoint = torch.load(join(self.backup_path, "restore_ckpt.pt"))
self.model.load_checkpoint(self.backup_path)
self.global_step = checkpoint['global_step']
LOGGER.info(f'resume training from step {self.global_step}')