-
Notifications
You must be signed in to change notification settings - Fork 116
/
Copy pathwutils.py
1467 lines (1275 loc) · 57.4 KB
/
wutils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding:utf-8 -*-
import os
import sys
import shutil
import subprocess
import logging
import colorlog
import argparse
import copy
import pathlib
import shlex
import deepdish
from tqdm import tqdm
import time
import platform
import pickle
import yaml
import glob
import random
import msgpack
import importlib
import traceback
from PIL import Image
import functools
from functools import partial
import urllib.request
from warnings import simplefilter
from datetime import timedelta
from timeit import default_timer
from configobj import ConfigObj
import requests
import psutil
import hashlib
import imageio
import math
import h5py
import csv
import collections
import json
import json_lines
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from torch.optim import Adam
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.utils.data import DataLoader, Dataset
from einops import rearrange, repeat
import torch.distributed as dist
from torchvision import datasets, transforms, utils
import torchvision
# Disable transformers outputs weights.
logging.getLogger().setLevel(logging.WARNING)
simplefilter(action='ignore', category=FutureWarning)
def get_logger(filename=None):
"""
examples:
logger = get_logger('try_logging.txt')
logger.debug("Do something.")
logger.info("Start print log.")
logger.warning("Something maybe fail.")
try:
raise ValueError()
except ValueError:
logger.error("Error", exc_info=True)
tips:
DO NOT logger.inf(some big tensors since color may not helpful.)
"""
logger = logging.getLogger('utils')
level = logging.DEBUG
logger.setLevel(level=level)
# Use propagate to avoid multiple loggings.
logger.propagate = False
# Remove %(levelname)s since we have colorlog to represent levelname.
format_str = '[%(asctime)s <%(filename)s:%(lineno)d> %(funcName)s] %(message)s'
streamHandler = logging.StreamHandler()
streamHandler.setLevel(level)
coloredFormatter = colorlog.ColoredFormatter(
'%(log_color)s' + format_str,
datefmt='%Y-%m-%d %H:%M:%S',
reset=True,
log_colors={
'DEBUG': 'cyan',
# 'INFO': 'white',
'WARNING': 'yellow',
'ERROR': 'red',
'CRITICAL': 'reg,bg_white',
}
)
streamHandler.setFormatter(coloredFormatter)
logger.addHandler(streamHandler)
if filename:
fileHandler = logging.FileHandler(filename)
fileHandler.setLevel(level)
formatter = logging.Formatter(format_str)
fileHandler.setFormatter(formatter)
logger.addHandler(fileHandler)
# Fix multiple logging for torch.distributed
try:
class UniqueLogger:
def __init__(self, logger):
self.logger = logger
self.local_rank = torch.distributed.get_rank()
def info(self, msg, *args, **kwargs):
if self.local_rank == 0:
return self.logger.info(msg, *args, **kwargs)
def warning(self, msg, *args, **kwargs):
if self.local_rank == 0:
return self.logger.warning(msg, *args, **kwargs)
logger = UniqueLogger(logger)
# AssertionError for gpu with no distributed
# AttributeError for no gpu.
except Exception:
pass
return logger
logger = get_logger()
logger.info("<utils.py>: Deep Learning Utils @ Chenfei Wu")
def path_join(path, *paths):
output = os.path.join(path, *paths).replace('\\', '/')
return output
class Timer:
def __init__(self):
'''
t = Timer()
time.sleep(1)
print(t.elapse())
'''
self.start = default_timer()
def elapse(self, readable=False):
seconds = default_timer() - self.start
if readable:
seconds = str(timedelta(seconds=seconds))
return seconds
def timing(f):
def wrap(*args):
time1 = time.time()
ret = f(*args)
time2 = time.time()
logger.info('%s function took %0.3f ms' % (f.__name__, (time2 - time1) * 1000.0))
return ret
return wrap
def identity(x):
return x
def groupby(l, key=lambda x: x):
d = collections.defaultdict(list)
for item in l:
d[key(item)].append(item)
return dict(d.items())
def list_filenames(dirname, filter_fn=None, sort_fn=None, printable=True):
dirname = os.path.abspath(dirname)
filenames = os.listdir(dirname)
filenames = [os.path.join(dirname, filename) for filename in filenames]
if filter_fn:
tmp = len(filenames)
if printable:
logger.info('Start filtering files in %s by %s.' % (dirname, filter_fn))
filenames = [e for e in filenames if filter_fn(e)]
if printable: logger.info(
'Detected %s files/dirs in %s, filtering to %s files.' % (tmp, dirname, len(filenames)))
else:
if printable: logger.info('Detected %s files/dirs in %s, No filtering.' % (len(filenames), dirname))
if sort_fn:
filenames = sorted(filenames, key=sort_fn)
return filenames
def listdict2dict2list(listdict, printable=True):
tmp_dict = collections.defaultdict(list)
for example_dict in listdict:
for k, v in example_dict.items():
tmp_dict[k].append(v)
if printable: logger.info('%s' % tmp_dict.keys())
return dict(tmp_dict)
def split_filename(filename):
absname = os.path.abspath(filename)
dirname, basename = os.path.split(absname)
split_tmp = basename.rsplit('.', maxsplit=1)
if len(split_tmp) == 2:
rootname, extname = split_tmp
elif len(split_tmp) == 1:
rootname = split_tmp[0]
extname = None
else:
raise ValueError("programming error!")
return dirname, rootname, extname
def get_suffix(file_path):
try:
return os.path.splitext(file_path)[-1]
except:
raise ValueError(f"file_path:{file_path} error!")
def data2file(data, filename, type=None, override=False, printable=False, **kwargs):
dirname, rootname, extname = split_filename(filename)
print_did_not_save_flag = True
if type:
extname = type
if not os.path.exists(dirname):
try:
os.makedirs(dirname, exist_ok=True)
except:
pass
if not os.path.exists(filename) or override:
if extname == 'pkl':
with open(filename, 'wb') as f:
pickle.dump(data, f)
elif extname == 'msg':
with open(filename, 'wb') as f:
msgpack.dump(data, f)
elif extname == 'h5':
if kwargs is None:
params = {}
split_num = kwargs.get('split_num')
if split_num:
if not isinstance(data, list):
raise ValueError(
'[error] utils.data2file: data must have type of list when use split_num, but got %s' % (
type(data)))
if not split_num <= len(data):
raise ValueError(
'[error] utils.data2file: split_num(%s) must <= data(%s)' % (len(split_num), len(data)))
print_save_flag = False
print_did_not_save_flag = False
pre_define_filenames = ["%s_%d" % (filename, i) for i in range(split_num)]
pre_search_filenames = glob.glob("%s*" % filename)
strict_existed = (set(pre_define_filenames) == set(pre_search_filenames) and len(
set([os.path.exists(e) for e in pre_define_filenames])) == 1)
common_existed = len(set([os.path.exists(e) for e in pre_search_filenames])) == 1
def rewrite():
logger.info('Spliting data to %s parts before saving...' % split_num)
data_splits = np.array_split(data, indices_or_sections=split_num)
for i, e in enumerate(data_splits):
deepdish.io.save("%s_%d" % (filename, i), list(e))
logger.info('Saved data to %s_(0~%d)' % (
os.path.abspath(filename), len(data_splits) - 1))
if strict_existed and not override:
logger.info(
'Did not save data to %s_(0~%d) because the files strictly exist and override is False' % (
os.path.abspath(filename), len(pre_search_filenames) - 1))
elif common_existed:
logger.warning('Old wrong files (maybe a differnt split) exist, auto delete them.')
for e in pre_search_filenames:
os.remove(e)
rewrite()
else:
rewrite()
else:
deepdish.io.save(filename, data)
elif extname == 'hy':
# hy support 2 params: key and max_step
# if key, then create group using key, else create group using index
# if max_step, then the loop may early stopping, used for debug
# Remove filename since h5py may corrupt.
if override:
remove_filename(filename)
key_str = kwargs.pop('key_str', None)
topk = kwargs.pop('topk', None)
with h5py.File(filename, 'w') as f:
for i, datum in enumerate(tqdm(data)):
if key_str:
grp = f.create_group(name=datum[key_str])
else:
grp = f.create_group(name=str(i))
for k in datum.keys():
grp[k] = datum[k]
if topk is not None and i + 1 == topk:
break
elif extname == 'csv':
with open(filename, 'w') as f:
writer = csv.writer(f)
writer.writerows(data)
elif extname == 'json':
with open(filename, 'w') as f:
json.dump(data, f)
elif extname == 'npy':
np.save(filename, data)
elif extname in ['jpg', 'png', 'jpeg']:
utils.save_image(data, filename, **kwargs)
elif extname == 'gif':
imageio.mimsave(filename, data, format='GIF', duration=kwargs.get('duration'))
elif extname == ['pth', 'pt', 'ckpt']:
torch.save(data, filename)
elif extname == 'txt':
if kwargs is None:
kwargs = {}
max_step = kwargs.get('max_step')
if max_step is None:
max_step = np.Infinity
with open(filename, 'w', encoding='utf-8') as f:
for i, e in enumerate(data):
if i < max_step:
f.write(str(e) + '\n')
else:
break
else:
raise ValueError('type can only support h5, csv, json, sess')
if printable: logger.info('Saved data to %s' % os.path.abspath(filename))
else:
if print_did_not_save_flag: logger.info(
'Did not save data to %s because file exists and override is False' % os.path.abspath(
filename))
def file2data(filename, type=None, printable=True, **kwargs):
dirname, rootname, extname = split_filename(filename)
print_load_flag = True
if type:
extname = type
if extname == 'pkl':
with open(filename, 'rb') as f:
data = pickle.load(f)
elif extname == 'msg':
with open(filename, 'rb') as f:
data = msgpack.load(f, encoding="utf-8")
elif extname == 'h5':
split_num = kwargs.get('split_num')
if split_num:
print_load_flag = False
if isinstance(split_num, int):
filenames = ["%s_%i" % (filename, i) for i in range(split_num)]
if split_num != len(glob.glob("%s*" % filename)):
logger.warning('Maybe you are giving a wrong split_num(%d) != seached num (%d)' % (
split_num, len(glob.glob("%s*" % filename))))
elif split_num == 'auto':
filenames = glob.glob("%s*" % filename)
logger.info('Auto located %d splits linked to %s' % (len(filenames), filename))
else:
raise ValueError("params['split_num'] got unexpected value: %s, which is not supported." % split_num)
data = []
for e in filenames:
data.extend(deepdish.io.load(e))
logger.info('Loaded data from %s_(%s)' % (
os.path.abspath(filename), ','.join(sorted([e.split('_')[-1] for e in filenames]))))
else:
data = deepdish.io.load(filename)
elif extname == 'csv':
data = pd.read_csv(filename)
elif extname == 'tsv': # Returns generator since tsv file is large.
if not kwargs.get('delimiter'): # Set default delimiter
kwargs['delimiter'] = '\t'
if not kwargs.get('fieldnames'): # Check field names
raise ValueError('You must specify fieldnames when load tsv data.')
# Required args.
key_str = kwargs.pop('key_str')
decode_fn = kwargs.pop('decode_fn')
# Optimal args.
topk = kwargs.pop('topk', None)
redis = kwargs.pop('redis', None)
if not redis:
data = dict()
else:
data = redis
if not redis or not redis.check():
with open(filename) as f:
reader = csv.DictReader(f, **kwargs)
for i, item in enumerate(tqdm(reader)):
if not redis: # if memory way
decode_fn(item)
data[item[key_str]] = item
if topk is not None and i + 1 == topk:
break
else:
logger.warning('check_str %s in redis, skip loading.' % data.check_str)
elif extname == 'hy':
data = h5py.File(filename, 'r')
elif extname in ['npy', 'npz']:
try:
data = np.load(filename, allow_pickle=True)
except UnicodeError:
logger.warning('%s is python2 format, auto use latin1 encoding.' % os.path.abspath(filename))
data = np.load(filename, encoding='latin1', allow_pickle=True)
elif extname == 'json':
with open(filename) as f:
try:
data = json.load(f)
except json.decoder.JSONDecodeError as e:
raise ValueError('[error] utils.file2data: failed to load json file %s' % filename)
elif extname == 'jsonl':
with open(filename, 'rb') as f:
data = [e for e in json_lines.reader(f)]
elif extname == 'ini':
data = ConfigObj(filename, encoding='utf-8')
elif extname in ['pth', 'ckpt']:
data = torch.load(filename, map_location=kwargs.get('map_location'))
elif extname == 'txt':
top = kwargs.get('top', None)
with open(filename, encoding='utf-8') as f:
if top:
data = [f.readline() for _ in range(top)]
else:
data = [e for e in f.read().split('\n') if e]
elif extname == 'yaml':
with open(filename, 'r') as f:
data = yaml.load(f)
else:
raise ValueError('type can only support h5, npy, json, txt')
if printable:
if print_load_flag:
logger.info('Loaded data from %s' % os.path.abspath(filename))
return data
def download_file(fileurl, filedir=None, progress_bar=True, override=False, fast=False, printable=True):
if filedir:
ensure_dirname(filedir)
assert os.path.isdir(filedir)
else:
filedir = ''
filename = os.path.abspath(os.path.join(filedir, fileurl.split('/')[-1]))
# print(filename)
dirname = os.path.dirname(filename)
if not os.path.exists(dirname):
os.makedirs(dirname)
logger.info("%s not exist, automatic makedir." % dirname)
if not os.path.exists(filename) or override:
if fast:
p = subprocess.Popen('axel -n 10 -o {0} {1}'.format(filename, fileurl), shell=True,
stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
for line in iter(p.stdout.readline, ''):
if line:
logger.info(line.decode('utf-8').replace('\n', ''))
else:
p.kill()
break
else:
if progress_bar:
def my_hook(t):
last_b = [0]
def inner(b=1, bsize=1, tsize=None):
if tsize is not None:
t.total = tsize
t.update((b - last_b[0]) * bsize)
last_b[0] = b
return inner
with tqdm(unit='B', unit_scale=True, miniters=1,
desc=fileurl.split('/')[-1]) as t:
urllib.request.urlretrieve(fileurl, filename=filename,
reporthook=my_hook(t), data=None)
else:
urllib.request.urlretrieve(fileurl, filename=filename)
if printable: logger.info("%s downloaded sucessfully." % filename)
else:
if printable: logger.info("%s already existed" % filename)
return filename
def copy_file(filename, targetname, override=False, printable=True):
filename = os.path.abspath(filename)
targetname = os.path.abspath(targetname)
if not os.path.exists(targetname) or override:
shutil.copy2(filename, targetname)
if printable:
logger.info('Copied %s to %s.' % (filename, targetname))
else:
if printable:
logger.info('Did not copy because %s exists.' % targetname)
def videofile2videometa(input_video):
out = execute_cmd('ffprobe -i %s -print_format json -show_streams' % input_video)
meta = json.loads(out.decode('utf-8'))
if 'duration' in meta['streams'][0]:
duration = float(meta['streams'][0]['duration'])
elif 'DURATION' in meta['streams'][0]['tags']: # Fix Duration for webm format.
duration_str = meta['streams'][0]['tags']['DURATION']
h, m, s = duration_str.split(':')
duration = float(h) * 3600 + float(m) * 60 + float(s)
else:
duration = execute_cmd("ffprobe -i %s -show_entries format=duration -v quiet -of csv=\"p=0\"" %(input_video))
duration = float(duration)
res = {'width': meta['streams'][0]['width'],
'height': meta['streams'][0]['height'],
'duration': duration,
'fps': eval(meta['streams'][0]['r_frame_rate'])}
return res
def videofile2videoarr(input_file, seek_start=None, seek_duration=None, seek_fps=None):
ffprob_out = execute_cmd(f'ffprobe -i {input_file} -print_format json -show_streams')
meta = json.loads(ffprob_out.decode('utf-8'))
width = meta['streams'][0]['width']
height = meta['streams'][0]['height']
cmd = f'ffmpeg -y -i {input_file} '
if seek_start:
cmd += f'-ss {seek_start} '
if seek_duration:
cmd += f'-t {seek_duration} '
if seek_fps:
cmd += f'-filter_complex [0]fps=fps={seek_fps}[s0] -map [s0] '
cmd += '-f rawvideo -pix_fmt rgb24 pipe:'
# assert cmd == 'ffmpeg -y -i pipe: -ss 2 -t 4 -filter_complex [0]fps=fps=0.5[s0] -map [s0] -f rawvideo -pix_fmt rgb24 pipe:'
ffmpeg_out = execute_cmd(cmd)
video = np.frombuffer(ffmpeg_out, np.uint8)
video = video.reshape([-1, height, width, 3])
return video
def ensure_dirname(dirname, override=False):
if os.path.exists(dirname) and override:
logger.info('Removing dirname: %s' % os.path.abspath(dirname))
try:
shutil.rmtree(dirname)
except OSError as e:
raise ValueError('Failed to delete %s because %s' % (dirname, e))
if not os.path.exists(dirname):
logger.info('Making dirname: %s' % os.path.abspath(dirname))
try:
os.makedirs(dirname, exist_ok=True)
except:
pass
def ensure_filename(filename, override=False):
dirname, rootname, extname = split_filename(filename)
ensure_dirname(dirname, override=False)
if os.path.exists(filename) and override:
os.remove(filename)
logger.info('Deleted filename %s' % filename)
def remove_filename(filename, printable=False):
if os.path.isfile(filename) or os.path.islink(filename):
os.remove(filename)
if printable:
logger.info('Deleted file %s.' % filename)
elif os.path.isdir(filename):
shutil.rmtree(filename)
if printable:
logger.info('Deleted dir %s.' % filename)
else:
raise ValueError("%s is not a file or dir." % filename)
def execute(cmd, wait=True, printable=True):
if wait:
if printable: logger.warning('Executing: '"%s"', waiting...' % cmd)
try:
output = subprocess.check_output(cmd, shell=True)
except subprocess.CalledProcessError as e:
logger.warning(e.output)
output = None
# sys.exit(-1)
return output
else:
if platform.system() == 'Windows':
black_hole = 'NUL'
elif platform.system() == 'Linux':
black_hole = '/dev/null'
else:
raise ValueError('Unsupported system %s' % platform.system())
cmd = cmd + ' 1>%s 2>&1' % black_hole
if printable: logger.info('Executing: '"%s"', not wait.' % cmd)
subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
# def execute_cmd(cmd, input_data=None, printable=False):
# if printable:
# print(f'Running CMD:\n{cmd}')
# process = subprocess.Popen(shlex.split(cmd), stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
# out, err = process.communicate(input=input_data)
# retcode = process.poll()
# if retcode:
# raise SystemError(f"\nCMD is:\n{cmd}\nERROR is:\n{err.decode('utf-8')}")
# return out
# def execute_cmd(cmd, input_data=None, printable=False):
# if printable:
# print(f'Running CMD:\n{cmd}')
# if input_data:
# process = subprocess.Popen(shlex.split(cmd), stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
# out, err = process.communicate(input=input_data)
# retcode = process.poll()
# if retcode:
# raise subprocess.CalledProcessError(f"\nCMD is:\n{cmd}\nERROR is:\n{err.decode('utf-8')}")
# return out
#
# else:
# with subprocess.Popen(shlex.split(cmd), stdout=subprocess.PIPE, bufsize=1, universal_newlines=True) as p:
# out = []
# for line in p.stdout:
# print(line, end='')
# out.append(line)
# if p.returncode != 0:
# raise subprocess.CalledProcessError(p.returncode, p.args)
# return out
# def execute_cmd(cmd, input_data=None, printable=False):
# # add shlex.quote
# # remove shlex.split
# process = subprocess.Popen(shlex.split(cmd), stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
# out, err = process.communicate(input=input_data)
# retcode = process.poll()
# if retcode:
# raise ValueError(err.decode('utf-8'))
# return out
def execute_cmd(cmd, input_data=None, printable=False):
if printable:
print(f'Running CMD:\n{cmd}')
process = subprocess.Popen(shlex.split(cmd), stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
out, err = process.communicate(input=input_data)
retcode = process.poll()
if retcode:
raise subprocess.CalledProcessError(f"\nCMD is:\n{cmd}\nERROR is:\n{err.decode('utf-8')}")
return out
def import_filename(filename):
spec = importlib.util.spec_from_file_location("mymodule", filename)
module = importlib.util.module_from_spec(spec)
sys.modules[spec.name] = module
spec.loader.exec_module(module)
return module
def pname2pid(str_proc_name):
map_proc_info = {}
for proc in psutil.process_iter():
if proc.name() == str_proc_name:
map_proc_info[proc.pid] = str_proc_name
return map_proc_info
def get_parameters(net: torch.nn.Module):
trainable_params = sum(p.numel() for p in net.parameters() if p.requires_grad)
frozen_params = sum(p.numel() for p in net.parameters() if not p.requires_grad)
fp32_trainable_params = sum(p.numel() for p in net.parameters() if p.dtype == torch.float32 and p.requires_grad)
fp16_trainable_params = sum(p.numel() for p in net.parameters() if p.dtype == torch.float16 and p.requires_grad)
fp32_frozen_params = sum(p.numel() for p in net.parameters() if p.dtype == torch.float32 and not p.requires_grad)
fp16_frozen_params = sum(p.numel() for p in net.parameters() if p.dtype == torch.float16 and not p.requires_grad)
return {'trainable': trainable_params, 'frozen': frozen_params,
'trainable_fp32': fp32_trainable_params,
'trainalbe_fp16': fp16_trainable_params,
'frozen_fp32': fp32_frozen_params, 'frozen_fp16': fp16_frozen_params}
def adaptively_load_state_dict(target, state_dict):
target_dict = target.state_dict()
try:
common_dict = {k: v for k, v in state_dict.items() if k in target_dict and v.size() == target_dict[k].size()}
except Exception as e:
logger.warning('load error %s', e)
common_dict = {k: v for k, v in state_dict.items() if k in target_dict}
if 'param_groups' in common_dict and common_dict['param_groups'][0]['params'] != \
target.state_dict()['param_groups'][0]['params']:
logger.warning('Detected mismatch params, auto adapte state_dict to current')
common_dict['param_groups'][0]['params'] = target.state_dict()['param_groups'][0]['params']
target_dict.update(common_dict)
target.load_state_dict(target_dict)
missing_keys = [k for k in target_dict.keys() if k not in common_dict]
unexpected_keys = [k for k in state_dict.keys() if k not in common_dict]
if len(unexpected_keys) != 0:
logger.warning(
f"Some weights of state_dict were not used in target: {unexpected_keys}"
)
if len(missing_keys) != 0:
logger.warning(
f"Some weights of target are missing in state_dict: {missing_keys}"
)
if len(unexpected_keys) == 0 and len(missing_keys) == 0:
logger.warning("Strictly Loaded state_dict.")
class Meter(object):
def __init__(self):
self.val = None
self.avg = None
self.sum = None
self.count = None
def update(self, val, n=1):
if isinstance(val, torch.Tensor):
val = val.item()
if isinstance(val, (int, float)):
self.val = val
if self.sum:
self.sum += val * n
else:
self.sum = val * n
if self.count:
self.count += n
else:
self.count = n
self.avg = self.sum / self.count
elif isinstance(val, dict):
for k, v in val.items():
if isinstance(v, torch.Tensor):
val[k] = v.item()
if self.val:
for k in val.keys():
self.val[k] = val[k]
else:
self.val = val
if self.sum:
for k in val.keys():
if k in self.sum:
self.sum[k] = self.sum[k] + val[k] * n
else:
self.sum[k] = val[k] * n
else:
self.sum = {k: val[k] * n for k in val.keys()}
if self.count:
for k in val.keys():
if k in self.count:
self.count[k] = self.count[k] + n
else:
self.count[k] = n
else:
self.count = {k: n for k in val.keys()}
self.avg = {k: self.sum[k] / self.count[k] for k in self.count.keys()}
else:
raise ValueError('Not supported type %s' % type(val))
def __str__(self):
if isinstance(self.avg, dict):
return str({k: "%.4f" % v for k, v in self.avg.items()})
def set_seed(seed=42):
random.seed(seed)
os.environ['PYHTONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
class Trainer:
"""
Trainer
"""
def __init__(self, args, model, optimizers=None, scheduler=None, pretrained_model=None, use_amp=True,
find_unused_parameters=True):
# Basic Params
self.args = args
self.log_dir = args.log_dir
self.model = model
self.optimizers = optimizers
self.scheduler = scheduler
self.pretrained_model = pretrained_model
self.use_amp = use_amp
self.find_unused_parameters = find_unused_parameters
# Load Pretrained Models.
if pretrained_model:
self.from_pretrained(pretrained_model)
# Get Variables from ENV
self.rank = int(os.getenv('RANK', '-1'))
self.local_rank = int(os.getenv('LOCAL_RANK', '-1'))
# Define Running mode.
if self.local_rank == -1:
self.mode = 'common'
self.enable_write_model = True
self.enable_collect = True
self.enable_write_metric = True
else:
self.mode = 'dist'
self.enable_write_model = (self.rank == 0)
self.enable_collect = True
self.enable_write_metric = (self.rank == 0)
if self.enable_write_metric:
ensure_dirname(self.log_dir, override=False)
self.metric_filename = os.path.join(self.log_dir, 'metric.json')
self.last_checkpoint_filename = os.path.join(self.log_dir, 'last.pth')
self.best_checkpoint_filename = os.path.join(self.log_dir, 'best.pth')
self.each_checkpoint_filename = os.path.join(self.log_dir, 'epoch%s.pth')
self.epoch = -1
# Get device and number of GPUs
self.n_gpu = torch.cuda.device_count()
if self.n_gpu >= 1:
self.device = torch.device("cuda")
else:
self.device = torch.device("cpu")
if self.use_amp and self.n_gpu < 1:
raise ValueError('AMP Does not support CPU!')
if self.use_amp and self.mode == 'common':
logger.warning('In common mode, remember to @autocast before forward function.')
self.scalar = torch.cuda.amp.GradScaler(enabled=self.use_amp)
# TODO
if hasattr(args, 'iterative_model_class'):
self.iterative_model = args.iterative_model_class(args=args)
else:
self.iterative_model = None
def reduce_mean(self, tensor):
rt = tensor.clone()
size = int(os.environ['WORLD_SIZE'])
dist.all_reduce(rt, op=dist.ReduceOp.SUM)
rt = rt / size
return rt
def wrap_model(self):
if hasattr(self.model, 'module'):
raise ValueError('You do not need to wrap a models with modules.')
if self.mode == 'common':
logger.info('Wrapped models to common %s.' % self.device)
self.model.to(self.device)
if self.n_gpu > 1:
logger.warning('Detected %s gpus, auto using DataParallel.' % self.n_gpu)
self.model = torch.nn.DataParallel(self.model)
elif self.mode == 'dist':
logger.info('Wrapped models to distributed %s.' % self.device)
self.device = torch.device("cuda", self.local_rank)
self.model.to(self.device)
self.model = torch.nn.parallel.DistributedDataParallel(
self.model, device_ids=[self.local_rank],
output_device=self.local_rank,
find_unused_parameters=self.find_unused_parameters)
else:
raise ValueError
# wrap_optimizers
if self.optimizers:
for i in range(len(self.optimizers)):
self.optimizers[i].load_state_dict(
complex_to_device(self.optimizers[i].state_dict(), device=self.device))
def check_outputs(self, outputs):
error_message = 'Model output must be a dict. The key must be "class_subclass" format.' \
' "class" can only be loss, metric, or logits. "subclass" should be a string.' \
' But got an unexpected key %s'
loss_total_list = [e for e in outputs.keys() if e.startswith('loss_total')]
if not loss_total_list:
raise ValueError('Model output must contain a key startswith "loss_total"!')
for k, v in outputs.items():
split_res = k.split('_')
if len(split_res) < 2:
raise ValueError(error_message % k)
if k.split('_')[0] not in ['loss', 'metric', 'logits']:
raise ValueError(error_message % k)
def train(self, train_loader, eval_loader=None, epochs=5, resume=True, eval_step=10,
save_step=None, use_tqdm=None, max_norm=None, gradient_accumulate_steps=1,
inner_collect_fn=None, best_metric_fn=lambda x: x['train']['loss_total']):
if not save_step:
save_step = eval_step
best_eval_metric = np.Infinity
if resume:
if os.path.exists(self.last_checkpoint_filename):
self.load_checkpoint(self.last_checkpoint_filename)
else:
if self.enable_write_metric:
logger.warning('Dangerous! You set resume=False. Auto cleaning all the logs under %s' % self.log_dir)
ensure_dirname(self.log_dir, override=True)
self.wrap_model()
epoch_iter = range(self.epoch + 1, epochs, 1)
if len(epoch_iter):
logger.warning('Start train & val phase...')
else:
logger.warning('Skip train & val phase...')
logger.warning(f'Train examples: {len(train_loader.dataset)}, epochs: {epochs}, '
f'global_batch_size: {self.args.train_batch_size}, local_batch_size: {train_loader.batch_size}.')
# Train & Eval phase
for epoch in epoch_iter:
self.epoch = epoch
# Train phase
train_meter, train_time = self.train_fn(train_loader,
max_norm=max_norm,
gradient_accumulate_steps=gradient_accumulate_steps,
use_tqdm=use_tqdm)
logger.info('[Rank %s] Train Epoch: %d/%d, Time: %s\n %s' %
(self.rank, epoch + 1, epochs, train_time, train_meter.avg))
if not isinstance(train_meter.avg, dict):
raise ValueError(type(train_meter.avg))
metric = {'Epoch%s' % (epoch + 1): {'train': {**train_meter.avg, **{'time': train_time}}}}
if self.enable_write_metric:
self.update_metric_file(metric)
if (epoch + 1) % save_step == 0:
if self.enable_write_model:
self.save_checkpoint(self.last_checkpoint_filename)
copy_file(self.last_checkpoint_filename, self.each_checkpoint_filename % str(epoch + 1),
override=True)
if (epoch + 1) % eval_step == 0:
if eval_loader:
eval_meter, eval_time = self.eval_fn(eval_loader, inner_collect_fn=inner_collect_fn,
use_tqdm=use_tqdm)
logger.info('[Rank %s] Valid Epoch: %d/%d, Time: %s\n %s' %
(self.rank, epoch + 1, epochs, eval_time, eval_meter.avg))
# Update metric with eval metrics
metric['Epoch%s' % (epoch + 1)].update({'eval': {**eval_meter.avg, **{'time': eval_time}}})
# Save metric file
if self.enable_write_metric:
self.update_metric_file(metric)
# If the best models, save another checkpoint.
# if best_metric_fn(metric['Epoch%s' % (epoch + 1)]) < best_eval_metric and self.enable_write_model:
# best_eval_metric = best_metric_fn(metric['Epoch%s' % (epoch + 1)])
# if os.path.exists(self.last_checkpoint_filename):
# copy_file(self.last_checkpoint_filename, self.best_checkpoint_filename, override=True)
# else:
# logger.warning('No checkpoint_file %s' % self.last_checkpoint_filename)
def eval(self, eval_loader, inner_collect_fn=None, use_tqdm=True):
# This function is used to do evaluating after training.
if not self.pretrained_model:
logger.warning('You should create a new config file and specify pretrained_model in Args when using eval.')
# Wrap models before evaluating. This will support ddp evaluating.
self.wrap_model()
eval_meter, eval_time = self.eval_fn(eval_loader, inner_collect_fn=inner_collect_fn, use_tqdm=use_tqdm)
logger.info('[Rank %s] Valid Time: %s\n %s' % (self.rank, eval_time, eval_meter.avg))
def update_metric_file(self, metric):
if os.path.exists(self.metric_filename):
r = file2data(self.metric_filename, printable=False)
data2file(dict(r, **metric), self.metric_filename, override=True)
else:
data2file(metric, self.metric_filename)
def train_fn(self, train_loader, max_norm, gradient_accumulate_steps=1, use_tqdm=True):
self.model.train()
train_meter = Meter()
train_timer = Timer()
train_iter = tqdm(train_loader, total=len(train_loader), disable=not use_tqdm)
for step, inputs in enumerate(train_iter):
for optimizer_idx in range(len(self.optimizers)):
if not getattr(self.optimizers[optimizer_idx], 'is_enabled', lambda x: True)(self.epoch):
continue
inputs = complex_to_device(inputs, self.device)
inputs['epoch'] = self.epoch
inputs['global_step'] = self.epoch * len(train_loader) + step
inputs['optimizer_idx'] = optimizer_idx
# for outputs in self.models(inputs):
for outputs in self.iterative_model.forward(self.model, inputs) \
if self.iterative_model else [self.model(inputs)]:
self.check_outputs(outputs)
# If we use nn.Parallel, we will get a list of metric or losses from different GPUs, we need to mean them.
if self.mode == 'common' and self.n_gpu > 1:
for k, v in outputs.items():
if k.split('_')[0] in ['metric', 'loss']:
outputs[k] = v.mean()
if optimizer_idx == 0: