forked from SYQ-s/QA-3D-ResNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
305 lines (280 loc) · 12.5 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import cv2
import os
import time
import math
import logging
import argparse
import torch
import torch.nn as nn
import numpy as np
from datetime import datetime
from scipy import signal
from sklearn import preprocessing
from torch.utils.data import Dataset
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
# from ResNet3D import resnet18
from improved_ResNet import resnet18
from OF import OpticalFlowCalculator
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score
import matplotlib.pyplot as plt
import numpy as np
import warnings
warnings.filterwarnings("ignore")
class Key_Dataset(Dataset):
def __init__(self, data_path, label_path, frames=16, num_classes=100, test=False, transform=None):
super(Key_Dataset, self).__init__()
self.data_path = data_path
self.label_path = label_path
self.transform = transform
self.frames = frames
self.num_classes = num_classes
self.test = test
self.flow = OpticalFlowCalculator()
if self.test:
self.videos_per_folder = int(250 * 0.1)
self.data_folder = []
try:
obs_path = [os.path.join(self.data_path, item) for item in os.listdir(self.data_path)]
self.data_folder = sorted([item for item in obs_path if os.path.isdir(item)])
except Exception as e:
print("Something wrong with your data path!!!")
raise
self.labels = {}
try:
label_file = open(self.label_path, 'r', encoding='UTF-8')
for line in label_file.readlines():
line = line.strip()
line = line.split('\t')
self.labels[line[0]] = line[1]
except Exception as e:
raise
def read_images(self, folder_path):
videoFile = cv2.VideoCapture(folder_path)
ret, frame = videoFile.read()
height = 0.2
data = []
count = 0
imgs = []
while ret:
xvel, yvel = self.flow.processFrame(frame[120:720, 340:940])
img = cv2.resize(frame[120:720, 340:940], (224, 224))
imgs.append(img)
if count >= 2:
data.append(math.log(xvel * xvel + yvel * yvel + 1))
ret, frame = videoFile.read()
count += 1
min_max_scaler = preprocessing.MinMaxScaler()
data1 = np.squeeze(min_max_scaler.fit_transform(np.expand_dims(data, axis=1)), axis=1)
peaks = signal.find_peaks(data1, height=height)
begin = peaks[0][0] + 2
end = peaks[0][-1] + 2
body = end - begin + 1
while body < self.frames:
height = height / 2
peaks = signal.find_peaks(data1, height=height)
begin = peaks[0][0]+2
end = peaks[0][-1]+2
body = end - begin + 1
assert body >= self.frames, "Too few images in your data folder: " + str(folder_path) + str(body)
images = []
K = []
sta = begin - 1
refer = imgs[sta]
for j in range(0, self.frames):
f = {}
h = {}
a = []
start = int(sta + j * body / self.frames + 0.5)
l = int(sta + (j + 1) * body / self.frames + 0.5)
if l - start == 1:
refer = imgs[l]
K.append(l)
image = self.transform(imgs[l])
images.append(image)
else:
for m in range(start, l):
curr_frame = imgs[m]
diff = np.sqrt(np.sum(np.square(curr_frame - refer)))
f[m] = diff
f_order = sorted(f.items(), key=lambda x: x[1], reverse=False)
C = {}
for n in range(len(f_order) - 1):
sum1 = []
sum2 = []
if n == 0:
sum1 = f_order[n][1]
m1 = f_order[n][1]
for q in range(1, len(f_order)):
single2 = f_order[q][1]
sum2.append(single2)
m2 = np.mean(sum2)
sigma1 = np.std(sum1, ddof=0)
sigma2 = np.std(sum2, ddof=0)
else:
for p in range(n + 1):
single1 = f_order[p][1]
sum1.append(single1)
m1 = np.mean(sum1)
for q in range(n + 1, len(f_order)):
single2 = f_order[q][1]
sum2.append(single2)
m2 = np.mean(sum2)
sigma1 = np.std(sum1, ddof=0)
sigma2 = np.std(sum2, ddof=0)
c = np.square(m1 - m2) / (sigma1 ** 2 + sigma2 ** 2)
C[f_order[n][0]] = c
KK = max(C, key=lambda r: C[r])
# 对后(n-KK)帧计算每一帧的模糊程度,选择模糊程度最低的一帧作为当前段的关键帧,也作为下一段的参考帧
for y in range(len(f_order)):
Y = f_order[y][0]
a.append(Y)
for b in a:
if b == KK:
index_KK = a.index(b)
KK_latter = a[index_KK + 1:]
# 利用拉普拉斯算子计算图像的模糊程度
for e in KK_latter:
ima = imgs[e]
ima = cv2.Laplacian(ima, cv2.CV_64F).var()
h[e] = ima
key = max(h, key=lambda r: h[r])
image = self.transform(imgs[key])
images.append(image)
K.append(key)
refer = imgs[key]
images = torch.stack(images, dim=0)
images = images.permute(1, 0, 2, 3)
return images
def __len__(self):
return self.num_classes * self.videos_per_folder
def __getitem__(self, idx):
top_folder = self.data_folder[int(idx / self.videos_per_folder)]
selected_folders = [os.path.join(top_folder, item) for item in os.listdir(top_folder)]
selected_folders = sorted([item for item in selected_folders if os.path.isfile(item)])
selected_folder = selected_folders[idx % self.videos_per_folder]
images = self.read_images(selected_folder)
label = torch.LongTensor([int(idx / self.videos_per_folder)])
return {'data': images, 'label': label, 'images': images}
def label_to_word(self, label):
if isinstance(label, torch.Tensor):
return self.labels['{:06d}'.format(label.item())]
elif isinstance(label, int):
return self.labels['{:06d}'.format(label)]
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data_path', default='F:/dataset/CSL2018/gloss-zip/1/all_video_721/test',
type=str, help='Data path for testing')
parser.add_argument('--label_path', default="F:/dataset/CSL2018/gloss-zip/1/dictionary100.txt",
type=str, help='Label path for testing')
parser.add_argument('--model', default='resnet3d',
type=str, help='Choose a model for testing')
parser.add_argument('--model_path', default='F:/code/results/paper/model/improved_ResNet/resnet3d_epoch038.pth',
type=str, help='Model state dict path')
parser.add_argument('--batch_size', default=1,
type=int, help='Batch size for testing')
parser.add_argument('--sample_size', default=224,
type=int, help='Sample size for testing')
parser.add_argument('--sample_duration', default=16,
type=int, help='Sample duration for testing')
parser.add_argument('--no_cuda', action='store_true',
help='If true, dont use cuda')
parser.add_argument('--cuda_devices', default='0',
type=str, help='Cuda visible devices')
parser.add_argument('--num_classes', default=100,
type=int, help='Number of classes for testing')
args = parser.parse_args()
# Hyperparams
num_classes = args.num_classes
batch_size = args.batch_size
sample_size = args.sample_size
sample_duration = args.sample_duration
data_path = args.data_path
model_path = args.model_path
label_path = args.label_path
log_path = "C:/Users/218/Desktop/run/paper/improved_ResNet.log".format(datetime.now())
logging.basicConfig(level=logging.INFO, format='%(message)s',
handlers=[logging.FileHandler(log_path), logging.StreamHandler()])
logger = logging.getLogger('SLR')
# Use specific gpus
os.environ["CUDA_VISIBLE_DEVICES"] = args.cuda_devices
# Device setting
if torch.cuda.is_available() and not args.no_cuda:
device = torch.device("cuda")
else:
device = torch.device("cpu")
# Create model
if args.model =='resnet3d':
model = resnet18(sample_size=sample_size, sample_duration=sample_duration, num_classes=num_classes).to(device)
# Run the model parallelly
model = nn.DataParallel(model)
# Load model
model.load_state_dict(torch.load(model_path))
# Test the model
model.eval()
all_pred = []
count = 0
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize(mean=[0.5], std=[0.5])])
test_set = Key_Dataset(data_path=data_path, label_path=label_path, frames=sample_duration,
num_classes=num_classes, test=True, transform=transform)
test_loader = DataLoader(test_set, batch_size=batch_size, shuffle=True, num_workers=16, pin_memory=True)
predictions = np.array([])
labels = np.array([])
with torch.no_grad():
for batch_idx, data in enumerate(test_loader):
# get the inputs and labels
inputs = data['data'].to(device)
# forward
outputs = model(inputs)
m = nn.Softmax(dim=1)
outputs = m(outputs)
# collect labels & prediction
prediction = torch.max(outputs, 1)[1].cpu()
predictions = np.append(predictions, int(prediction))
labels = np.append(labels, int(data['label']))
prob = torch.max(outputs, 1)[0].cpu().numpy()
pro = prob[0]
if data['label'] == prediction:
count = count + 1
acc = count / len(test_set)
logger.info("model_path: {}".format(model_path))
logger.info("all_count: {}".format(len(test_set)))
logger.info("right_count: {}".format(count))
logger.info("accuracy: {:.2f}%".format(acc * 100))
logger.info("Running time: {:}s".format((end - start) / 2500))
# 混淆矩阵
C2 = confusion_matrix(labels, predictions, labels=np.arange(0, 100))
print("classification report:\n{}".format(classification_report(labels, predictions)))
accuracy = accuracy_score(labels, predictions, normalize=True, sample_weight=None)
precision = precision_score(labels, predictions, average='macro')
recall = recall_score(labels, predictions, average='macro')
print('accuracy: ', accuracy)
print('precision: ', precision)
print('recall: ', recall)
# 绘制混淆矩阵
def plot_confusion_matrix(cm, normalize=False, title='Confusion matrix', cmap=plt.cm.viridis):
"""
- cm : 计算出的混淆矩阵的值
- classes : 混淆矩阵中每一行每一列对应的列
- normalize : True:显示百分比, False:显示个数
"""
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("显示百分比:")
np.set_printoptions(formatter={'float': '{: 0.2f}'.format})
print(cm)
else:
print('显示具体数字:')
print(cm)
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.colorbar()
plt.xlim(0, 99)
plt.ylim(99, 0)
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.show()
plot_confusion_matrix(C2, normalize=True, title='Normalized confusion matrix')