forked from ricardojmendez/UnitySteer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOpenSteerUtility.cs
executable file
·326 lines (298 loc) · 14.7 KB
/
OpenSteerUtility.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
using System;
using UnityEngine;
using Random = UnityEngine.Random;
namespace UnitySteer
{
public static class OpenSteerUtility
{
/// <summary>
/// Returns a random unit-length vector on the X/Z plane.
/// </summary>
/// <returns>The unit vector on XZ plane.</returns>
public static Vector3 RandomUnitVectorOnXZPlane()
{
var tVector = Random.insideUnitSphere;
tVector.y = 0;
tVector.Normalize();
return tVector;
}
public static Vector3 LimitMaxDeviationAngle(Vector3 source, float cosineOfConeAngle, Vector3 basis)
{
return VecLimitDeviationAngleUtility(true, // force source INSIDE cone
source,
cosineOfConeAngle,
basis);
}
public static Vector3 VecLimitDeviationAngleUtility(bool insideOrOutside, Vector3 source,
float cosineOfConeAngle, Vector3 basis)
{
// immediately return zero length input vectors
var sourceLength = source.magnitude;
if (sourceLength == 0) return source;
// measure the angular deviation of "source" from "basis"
// There doesn't seem to be a significant performance difference
// between this and source.normalized, particularly since we
// needed the magnitude before anyway.
var direction = source / sourceLength;
var cosineOfSourceAngle = Vector3.Dot(direction, basis);
// Simply return "source" if it already meets the angle criteria.
// (note: we hope this top "if" gets compiled out since the flag
// is a constant when the function is inlined into its caller)
if (insideOrOutside)
{
// source vector is already inside the cone, just return it
if (cosineOfSourceAngle >= cosineOfConeAngle) return source;
}
else
{
// source vector is already outside the cone, just return it
if (cosineOfSourceAngle <= cosineOfConeAngle) return source;
}
// find the portion of "source" that is perpendicular to "basis"
var perp = PerpendicularComponent(source, basis);
// construct a new vector whose length equals the source vector,
// and lies on the intersection of a plane (formed the source and
// basis vectors) and a cone (whose axis is "basis" and whose
// angle corresponds to cosineOfConeAngle)
var perpDist = (float) Math.Sqrt(1 - (cosineOfConeAngle * cosineOfConeAngle));
var c0 = basis * cosineOfConeAngle;
var c1 = perp.normalized * perpDist;
return (c0 + c1) * sourceLength;
}
/// <summary>
/// Returns the parallel component to a vector.
/// </summary>
/// <returns>The parallel component.</returns>
/// <param name="source">Source.</param>
/// <param name="unitBasis">Unit basis vector.</param>
public static Vector3 ParallelComponent(Vector3 source, Vector3 unitBasis)
{
var projection = Vector3.Dot(source, unitBasis);
return unitBasis * projection;
}
/// <summary>
/// Returns the component of vector perpendicular to a unit basis vector.
/// </summary>
/// <returns>The component.</returns>
/// <param name="source">Source vector.</param>
/// <param name="unitBasis">Basis. Should be a unit vector.</param>
public static Vector3 PerpendicularComponent(Vector3 source, Vector3 unitBasis)
{
return source - ParallelComponent(source, unitBasis);
}
public static Vector3 SphericalWrapAround(Vector3 source, Vector3 center, float radius)
{
var offset = source - center;
var r = offset.magnitude;
var result = (r > radius) ? source + ((offset / r) * radius * -2) : source;
return result;
}
/// <summary>
/// Does a scalar random walk from an initial value, within boundaries.
/// </summary>
/// <returns>The next random walk value.</returns>
/// <param name="initial">Value to work from.</param>
/// <param name="walkSpeed">Walk speed.</param>
/// <param name="min">Minimum for the next value.</param>
/// <param name="max">Maximum for the next value.</param>
public static float ScalarRandomWalk(float initial, float walkSpeed, float min, float max)
{
var next = initial + ((Random.value * 2 - 1) * walkSpeed);
next = Mathf.Clamp(next, min, max);
return next;
}
/// <summary>
/// Compares x with an interfal and returns a comparison value.
/// </summary>
/// <returns>-1 if x is below the lower bound, +1 if above it, and 0 if it is in the described interval.</returns>
/// <param name="x">Amount to compare.</param>
/// <param name="lowerBound">Lower bound.</param>
/// <param name="upperBound">Upper bound.</param>
public static int IntervalComparison(float x, float lowerBound, float upperBound)
{
if (x < lowerBound) return -1;
if (x > upperBound) return +1;
return 0;
}
/// <summary>
/// Computes distance from a point to a line segment
///
/// Whenever possible the segment's normal and length should be calculated
/// in advance for performance reasons, if we're dealing with a known point
/// sequence in a path, but we provide for the case where the values aren't
/// sent.
/// </summary>
/// <returns>The distance from the point to the one chosen along the segment.</returns>
/// <param name="point">Point to calculate the distance from</param>
/// <param name="ep0">Segment start</param>
/// <param name="ep1">Segment end</param>
/// <param name="segmentProjection">Segment projection.</param>
public static float PointToSegmentDistance(Vector3 point, Vector3 ep0, Vector3 ep1,
ref float segmentProjection)
{
var cp = Vector3.zero;
return PointToSegmentDistance(point, ep0, ep1, ref cp, ref segmentProjection);
}
/// <summary>
/// Computes distance from a point to a line segment and fills in the
/// information for the closest chosen point along the segment.
///
/// Whenever possible the segment's normal and length should be calculated
/// in advance for performance reasons, if we're dealing with a known point
/// sequence in a path, but we provide for the case where the values aren't
/// sent.
/// </summary>
/// <param name="point">Point to calculate the distance from</param>
/// <param name="ep0">Segment start</param>
/// <param name="ep1">Segment end</param>
/// <param name="chosenPoint">Chosen closest point along the segment</param>
/// <remarks>Not crazy about having the segment length as a separate
/// parameter, since it could introduce bugs where the wrong length is
/// passed, but it allows us to have the segments pre-calculated</remarks>
/// <returns>The distance from the point to the one chosen along the segment.</returns>
public static float PointToSegmentDistance(Vector3 point, Vector3 ep0, Vector3 ep1,
ref Vector3 chosenPoint)
{
float sp = 0;
return PointToSegmentDistance(point, ep0, ep1, ref chosenPoint, ref sp);
}
/// <summary>
/// Computes distance from a point to a line segment and fills in the
/// information for both the closest chosen point along the segment, and
/// the segment projection.
///
/// Whenever possible the segment's normal and length should be calculated
/// in advance for performance reasons, if we're dealing with a known point
/// sequence in a path, but we provide for the case where the values aren't
/// sent.
/// </summary>
/// <param name="point">Point to calculate the distance from</param>
/// <param name="ep0">Segment start</param>
/// <param name="ep1">Segment end</param>
/// <param name="chosenPoint">Chosen closest point along the segment</param>
/// <param name="segmentProjection">Segment projection.</param>
/// <returns>The distance from the point to the one chosen along the segment.</returns>
public static float PointToSegmentDistance(Vector3 point, Vector3 ep0, Vector3 ep1,
ref Vector3 chosenPoint,
ref float segmentProjection)
{
var normal = ep1 - ep0;
var length = normal.magnitude;
normal *= 1 / length;
return PointToSegmentDistance(point, ep0, ep1, normal, length,
ref chosenPoint, ref segmentProjection);
}
/// <summary>
/// Computes distance from a point to a line segment and fills in the
/// information for the segment projection for the closest point along
/// the line segment.
///
/// Whenever possible the segment's normal and length should be calculated
/// in advance for performance reasons, if we're dealing with a known point
/// sequence in a path, but we provide for the case where the values aren't
/// sent.
/// </summary>
/// <param name="point">Point to calculate the distance from</param>
/// <param name="ep0">Segment start</param>
/// <param name="ep1">Segment end</param>
/// <param name="segmentNormal">Segment normal</param>
/// <param name="segmentLength">Segment length</param>
/// <param name="segmentProjection">Segment projection for the closest point</param>
/// <remarks>Not crazy about having the segment length as a separate
/// parameter, since it could introduce bugs where the wrong length is
/// passed, but it allows us to have the segments pre-calculated</remarks>
/// <returns>The distance from the point to the one chosen along the segment.</returns>
public static float PointToSegmentDistance(Vector3 point, Vector3 ep0, Vector3 ep1,
Vector3 segmentNormal, float segmentLength,
ref float segmentProjection)
{
var cp = Vector3.zero;
return PointToSegmentDistance(point, ep0, ep1, segmentNormal, segmentLength,
ref cp, ref segmentProjection);
}
/// <summary>
/// Computes distance from a point to a line segment and fills in the
/// information for the closest chosen point along the segment.
/// </summary>
/// <param name="point">Point to calculate the distance from</param>
/// <param name="ep0">Segment start</param>
/// <param name="ep1">Segment end</param>
/// <param name="segmentNormal">Segment normal</param>
/// <param name="segmentLength">Segment length</param>
/// <param name="chosenPoint">Chosen closest point along the segment</param>
/// <remarks>Not crazy about having the segment length as a separate
/// parameter, since it could introduce bugs where the wrong length is
/// passed, but it allows us to have the segments pre-calculated</remarks>
/// <returns>The distance from the point to the one chosen along the segment.</returns>
public static float PointToSegmentDistance(Vector3 point, Vector3 ep0, Vector3 ep1,
Vector3 segmentNormal, float segmentLength,
ref Vector3 chosenPoint)
{
float sp = 0;
return PointToSegmentDistance(point, ep0, ep1, segmentNormal, segmentLength,
ref chosenPoint, ref sp);
}
/// <summary>
/// Computes distance from a point to a line segment and fills in the
/// information for both the closest chosen point along the segment, and
/// the segment projection.
/// </summary>
/// <param name="point">Point to calculate the distance from</param>
/// <param name="ep0">Segment start</param>
/// <param name="ep1">Segment end</param>
/// <param name="segmentNormal">Segment normal</param>
/// <param name="segmentLength">Segment length</param>
/// <param name="chosenPoint">Chosen closest point along the segment</param>
/// <param name="segmentProjection">Segment projection.</param>
/// <remarks>Not crazy about having the segment length as a separate
/// parameter, since it could introduce bugs where the wrong length is
/// passed, but it allows us to have the segments pre-calculated</remarks>
/// <returns>The distance from the point to the one chosen along the segment.</returns>
public static float PointToSegmentDistance(Vector3 point, Vector3 ep0, Vector3 ep1,
Vector3 segmentNormal, float segmentLength,
ref Vector3 chosenPoint,
ref float segmentProjection)
{
// convert the test point to be "local" to ep0
var local = point - ep0;
// find the projection of "local" onto "segmentNormal"
segmentProjection = Vector3.Dot(segmentNormal, local);
// handle boundary cases: when projection is not on segment, the
// nearest point is one of the endpoints of the segment
if (segmentProjection < 0)
{
chosenPoint = ep0;
segmentProjection = 0;
return (point - ep0).magnitude;
}
if (segmentProjection > segmentLength)
{
chosenPoint = ep1;
segmentProjection = segmentLength;
return (point - ep1).magnitude;
}
// otherwise nearest point is projection point on segment
chosenPoint = segmentNormal * segmentProjection;
chosenPoint += ep0;
return Vector3.Distance(point, chosenPoint);
}
/// <summary>
/// Returns the cosine for an angle in degrees
/// </summary>
/// <returns>Cosine.</returns>
/// <param name="angle">Angle in degrees.</param>
public static float CosFromDegrees(float angle)
{
return Mathf.Cos(angle * Mathf.Deg2Rad);
}
/// <summary>
/// Returns an angle in degrees from a cosine
/// </summary>
/// <returns>Corresonding angle in degrees.</returns>
/// <param name="cos">Cosine.</param>
public static float DegreesFromCos(float cos)
{
return Mathf.Rad2Deg * Mathf.Acos(cos);
}
}
}