-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathapp_streamlit.py
57 lines (42 loc) · 1.68 KB
/
app_streamlit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import streamlit as st
import numpy as np
from PIL import Image
from diffusers_pipeline import HandFixerPipeline
@st.cache_resource
def load_pipeline():
return HandFixerPipeline('/mnt/dolphinfs/ssd_pool/docker/user/hadoop-fincv/zhuxiangyu04/pretrain/stable-diffusion/huggingface.co/black-forest-labs/FLUX.1-dev')
def process_image(pipe, input_image):
# 确保输入是 PIL Image
if not isinstance(input_image, Image.Image):
input_image = Image.fromarray(input_image)
# 处理图像
output_image = pipe(input_image)
# 确保输出是 PIL Image
if not isinstance(output_image, Image.Image):
output_image = Image.fromarray(output_image)
return output_image
def main():
st.set_page_config(page_title="HandFixer: 手部修复")
st.title("HandFixer: 手部修复")
st.markdown("上传一张图片,查看处理前后的对比结果。")
# 加载pipeline
pipe = load_pipeline()
# 文件上传
uploaded_file = st.file_uploader("选择一张图片", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
# 读取上传的图片
input_image = Image.open(uploaded_file)
# 处理图片
output_image = process_image(pipe, input_image)
# 创建两列来并排显示图片
col1, col2 = st.columns(2)
# 在第一列显示原始图片
with col1:
st.subheader("原始图片")
st.image(input_image, use_container_width=True)
# 在第二列显示处理后的图片
with col2:
st.subheader("处理后的图片")
st.image(output_image, use_container_width=True)
if __name__ == "__main__":
main()