-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patharms.py
161 lines (137 loc) · 5.14 KB
/
arms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
""" Packages import """
import numpy as np
from scipy.stats import truncnorm as trunc_norm
from utils import convert_tg_mean
class AbstractArm(object):
def __init__(self, mean, variance, random_state):
"""
:param mean: float, expectation of the arm
:param variance: float, variance of the arm
:param random_state: int, seed to make experiments reproducible
"""
self.mean = mean
self.variance = variance
self.local_random = np.random.RandomState(random_state)
def sample(self):
pass
class ArmBernoulli(AbstractArm):
def __init__(self, p, random_state=0):
"""
:param p: float, mean parameter
:param random_state: int, seed to make experiments reproducible
"""
self.p = p
super(ArmBernoulli, self).__init__(mean=p,
variance=p * (1. - p),
random_state=random_state)
def sample(self):
"""
Sampling strategy
:return: float, a sample from the arm
"""
return (self.local_random.rand(1) < self.p)*1.
class ArmBeta(AbstractArm):
def __init__(self, a, b, random_state=0):
"""
:param a: int, alpha coefficient in beta distribution
:param b: int, beta coefficient in beta distribution
:param random_state: int, seed to make experiments reproducible
"""
self.a = a
self.b = b
super(ArmBeta, self).__init__(mean=a/(a + b),
variance=(a * b)/((a + b) ** 2 * (a + b + 1)),
random_state=random_state)
def sample(self):
"""
Sampling strategy
:return: float, a sample from the arm
"""
return self.local_random.beta(self.a, self.b, 1)
class ArmGaussian(AbstractArm):
def __init__(self, mu, eta, random_state=0):
"""
:param mu: float, mean parameter in gaussian distribution
:param eta: float, std parameter in gaussian distribution
:param random_state: int, seed to make experiments reproducible
"""
self.mu = mu
self.eta = eta
super(ArmGaussian, self).__init__(mean=mu,
variance=eta**2,
random_state=random_state)
def sample(self):
"""
Sampling strategy
:return: float, a sample from the arm
"""
return self.local_random.normal(self.mu, self.eta, 1)
class ArmFinite(AbstractArm):
def __init__(self, X, P, random_state=0):
"""
:param X: np.array, support of the distribution
:param P: np.array, associated probabilities
:param random_state: int, seed to make experiments reproducible
"""
self.X = X
self.P = P
mean = np.sum(X * P)
super(ArmFinite, self).__init__(mean=mean,
variance=np.sum(X ** 2 * P) - mean ** 2,
random_state=random_state)
def sample(self):
"""
Sampling strategy for an arm with a finite support and the associated probability distribution
:return: float, a sample from the arm
"""
i = self.local_random.choice(len(self.P), size=1, p=self.P)
reward = self.X[i]
return reward
class ArmExponential(AbstractArm):
def __init__(self, p, random_state=0):
"""
:param mu: float, mean parameter in gaussian distribution
:param eta: float, std parameter in gaussian distribution
:param random_state: int, seed to make experiments reproducible
"""
self.p = p
super(ArmExponential, self).__init__(mean=p,
variance=p**2,
random_state=random_state)
def sample(self):
"""
Sampling strategy
:return: float, a sample from the arm
"""
return self.local_random.exponential(self.p, 1)
class dirac():
def __init__(self, c, random_state):
"""
:param c: mean
:param random_state: int, seed to make experiments reproducible
"""
self.mean = c
self.variance = 0
self.local_random = np.random.RandomState(random_state)
def sample(self):
return [self.mean]
class ArmTG(AbstractArm):
def __init__(self, mu, scale, random_state=0):
"""
Truncated Gaussian distribution
:param mu: mean
:param random_state: int, seed to make experiments reproducible
"""
self.mu = mu
self.scale = scale
self.dist = trunc_norm(-mu/scale, b=(1-mu)/scale, loc=mu, scale=scale)
self.dist.random_state = random_state
super(ArmTG, self).__init__(mean=convert_tg_mean(mu, scale), variance=scale**2,
random_state=random_state)
def sample(self):
"""
Sampling strategy
:return: float, a sample from the arm
"""
x = self.local_random.normal(self.mu, self.scale, 1)
return x * (x > 0) * (x < 1) + (x > 1)