-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgat.py
127 lines (111 loc) · 5.02 KB
/
gat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import torch
import torch.nn.functional as F
from torch_geometric.nn import GATConv, global_mean_pool
from torch_geometric.loader import DataLoader
from torch_geometric.data import Data
import networkx as nx
import os
from sklearn.model_selection import LeaveOneGroupOut
import numpy as np
import matplotlib.pyplot as plt
#GAT model
class GAT(torch.nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim, heads=1):
super(GAT, self).__init__()
self.conv1 = GATConv(input_dim, hidden_dim, heads=heads, dropout=0.6)
self.conv2 = GATConv(hidden_dim * heads, hidden_dim, heads=heads, dropout=0.6)
self.fc = torch.nn.Linear(hidden_dim * heads, output_dim)
def forward(self, data):
x, edge_index, batch = data.x, data.edge_index, data.batch
x = self.conv1(x, edge_index)
x = F.elu(x)
x = self.conv2(x, edge_index)
x = global_mean_pool(x, batch) #pooling layer
x = self.fc(x)
return F.log_softmax(x, dim=1)
#load the graphs and labels
def load_graphs(graph_path, n_sub):
graphs = []
labels = []
for sub_id in range(n_sub):
for trial in range(80): #80 trials per subject
graph_file_path = os.path.join(graph_path, f'graph_sub_{sub_id}_trial_{trial}.graphml')
if os.path.exists(graph_file_path):
G = nx.read_graphml(graph_file_path)
x = torch.tensor([[G.nodes[n]['feature']] for n in G.nodes], dtype=torch.float)
edge_index = torch.tensor([[int(e[0]), int(e[1])] for e in G.edges], dtype=torch.long).t().contiguous()
y = torch.tensor([int(G.graph['label'])], dtype=torch.long)
#change labels for binary classification
binary_label = 0 if y.item() in [0, 1] else 1
data = Data(x=x, edge_index=edge_index, y=torch.tensor([binary_label], dtype=torch.long), batch=torch.zeros(x.size(0), dtype=torch.long))
graphs.append(data)
labels.append(binary_label)
else:
print(f"Graph file not found: {graph_file_path}")
return graphs, labels
#training and evaluation
def train_and_evaluate(graphs, labels, n_sub):
logo = LeaveOneGroupOut()
groups = np.repeat(np.arange(n_sub), 80) #80 trials per subject
all_accuracies = []
overall_correct = 0
overall_total = 0
for loso_number, (train_idx, test_idx) in enumerate(logo.split(graphs, labels, groups), start=1):
train_loader = DataLoader([graphs[i] for i in train_idx], batch_size=16, shuffle=True)
test_loader = DataLoader([graphs[i] for i in test_idx], batch_size=16)
model = GAT(input_dim=1, hidden_dim=16, output_dim=2, heads=2)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
criterion = torch.nn.CrossEntropyLoss()
#training
model.train()
for epoch in range(50): #50 epochs
epoch_loss = 0
correct = 0
total = 0
for data in train_loader:
optimizer.zero_grad()
out = model(data)
loss = criterion(out, data.y.view(-1))
loss.backward()
optimizer.step()
epoch_loss += loss.item()
pred = out.argmax(dim=1)
correct += (pred == data.y.view(-1)).sum().item()
total += data.y.size(0)
train_accuracy = correct / total * 100
print(f"LOSO {loso_number}, Epoch {epoch+1}, Loss: {epoch_loss:.4f}, Training Accuracy: {train_accuracy:.2f}%")
#evaluation
model.eval()
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
out = model(data)
pred = out.argmax(dim=1)
correct += (pred == data.y.view(-1)).sum().item()
total += data.y.size(0)
test_accuracy = correct / total * 100
all_accuracies.append(test_accuracy)
overall_correct += correct
overall_total += total
print(f"LOSO {loso_number}, Test Accuracy: {test_accuracy:.2f}%")
overall_accuracy = overall_correct / overall_total * 100
print(f"Overall Accuracy: {overall_accuracy:.2f}%")
return all_accuracies, overall_accuracy
#visualization
def plot_results(all_accuracies, overall_accuracy):
plt.figure(figsize=(10, 6))
plt.plot(all_accuracies, label='Test Accuracy per Subject')
plt.axhline(y=overall_accuracy, color='r', linestyle='--', label='Overall Accuracy')
plt.xlabel('Subject Index')
plt.ylabel('Accuracy (%)')
plt.title('Accuracy per Subject and Overall Accuracy')
plt.legend()
plt.savefig('results/accuracy_plot_binary_gat.png') #save the plot instead of showing it
#main execution
if __name__ == "__main__":
graph_path = "graph_files"
n_sub = 28
graphs, labels = load_graphs(graph_path, n_sub)
all_accuracies, overall_accuracy = train_and_evaluate(graphs, labels, n_sub)
plot_results(all_accuracies, overall_accuracy)