-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
42 lines (28 loc) · 1.35 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from yolo_v2 import tensor_to_boxes, compute_map
from model import build_model
import numpy as np
import argparse
import json
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", type=str, default="test", help="The dataset name.")
parser.add_argument("--batch_size", type=int, default=16, help="The batch size for used the testing.")
parser.add_argument("--scaling", type=int, default=16, help="The scaling factor of the model.")
parser.add_argument("--alpha", type=float, default=0.1, help="The detection threshold.")
parser.add_argument("--beta", type=float, default=0.3, help="The NMS threshold.")
args = parser.parse_args()
dataset = args.dataset
batch_size = args.batch_size
scaling = args.scaling
alpha = args.alpha
beta = args.beta
x_test = np.load(f"dataset/x_{dataset}.npy")
x_test = np.expand_dims(x_test, axis=-1)
priors = np.load("weights/priors.npy")
height, width = x_test.shape[1:3]
model = build_model(width, height, priors, 10)
model.load_weights("weights/weights.h5")
y_predicted = model.predict(x_test, batch_size=batch_size)
y_predicted = tensor_to_boxes(y_predicted, scaling, alpha, beta)
y_test = json.load(open(f"dataset/y_{dataset}.json"))
print("mAP over the test set:", compute_map(y_test, y_predicted, 10, 0.5))