forked from JackonYang/captcha-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconv_captcha.py
165 lines (122 loc) · 5.88 KB
/
conv_captcha.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# -*- coding:utf-8 -*-
import argparse
import datetime
import sys
import tensorflow as tf
import input_data
MAX_STEPS = 20000
BATCH_SIZE = 50
LOG_DIR = 'log/cnn1-run-%s' % datetime.datetime.now().strftime('%Y%m%d_%H%M%S')
FLAGS = None
def variable_summaries(var):
"""Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.summary.scalar('mean', mean)
# with tf.name_scope('stddev'):
# stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
# tf.summary.scalar('stddev', stddev)
# tf.summary.scalar('max', tf.reduce_max(var))
# tf.summary.scalar('min', tf.reduce_min(var))
# tf.summary.histogram('histogram', var)
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.avg_pool(x, ksize=[1, 5, 5, 1],
strides=[1, 2, 2, 1], padding='SAME')
def main(_):
# load data
meta, train_data, test_data = input_data.load_data(FLAGS.data_dir, flatten=False)
print 'data loaded'
print 'train images: %s. test images: %s' % (train_data.images.shape[0], test_data.images.shape[0])
LABEL_SIZE = meta['label_size']
IMAGE_HEIGHT = meta['height']
IMAGE_WIDTH = meta['width']
IMAGE_SIZE = IMAGE_WIDTH * IMAGE_HEIGHT
print 'label_size: %s, image_size: %s' % (LABEL_SIZE, IMAGE_SIZE)
# variable in the graph for input data
with tf.name_scope('input'):
x = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT, IMAGE_WIDTH])
y_ = tf.placeholder(tf.float32, [None, LABEL_SIZE])
# must be 4-D with shape `[batch_size, height, width, channels]`
x_image = tf.reshape(x, [-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1])
tf.summary.image('input', x_image, max_outputs=LABEL_SIZE)
# define the model
with tf.name_scope('convolution-layer-1'):
W_conv1 = weight_variable([7, 7, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.tanh(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
with tf.name_scope('convolution-layer-2'):
W_conv2 = weight_variable([7, 7, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.tanh(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
with tf.name_scope('densely-connected'):
W_fc1 = weight_variable([IMAGE_WIDTH * IMAGE_HEIGHT * 4, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, IMAGE_WIDTH*IMAGE_HEIGHT*4])
h_fc1 = tf.nn.tanh(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
with tf.name_scope('dropout'):
# To reduce overfitting, we will apply dropout before the readout layer
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
with tf.name_scope('readout'):
W_fc2 = weight_variable([1024, LABEL_SIZE])
b_fc2 = bias_variable([LABEL_SIZE])
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
# Define loss and optimizer
# Returns:
# A 1-D `Tensor` of length `batch_size`
# of the same type as `logits` with the softmax cross entropy loss.
with tf.name_scope('loss'):
cross_entropy = tf.reduce_mean(
# -tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1]))
tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
variable_summaries(cross_entropy)
# forword prop
predict = tf.argmax(y_conv, axis=1)
expect = tf.argmax(y_, axis=1)
# evaluate accuracy
with tf.name_scope('evaluate_accuracy'):
correct_prediction = tf.equal(predict, expect)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
variable_summaries(accuracy)
with tf.Session() as sess:
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(LOG_DIR + '/train', sess.graph)
test_writer = tf.summary.FileWriter(LOG_DIR + '/test', sess.graph)
tf.global_variables_initializer().run()
# Train
for i in range(MAX_STEPS):
batch_xs, batch_ys = train_data.next_batch(BATCH_SIZE)
step_summary, _ = sess.run([merged, train_step], feed_dict={x: batch_xs, y_: batch_ys, keep_prob: 1.0})
train_writer.add_summary(step_summary, i)
if i % 100 == 0:
# Test trained model
valid_summary, train_accuracy = sess.run([merged, accuracy], feed_dict={x: batch_xs, y_: batch_ys, keep_prob: 1.0})
train_writer.add_summary(valid_summary, i)
# final check after looping
test_x, test_y = test_data.next_batch(2000)
test_summary, test_accuracy = sess.run([merged, accuracy], feed_dict={x: test_x, y_: test_y, keep_prob: 1.0})
test_writer.add_summary(test_summary, i)
print 'step %s, training accuracy = %.2f%%, testing accuracy = %.2f%%' % (i, train_accuracy * 100, test_accuracy * 100)
train_writer.close()
test_writer.close()
# final check after looping
test_x, test_y = test_data.next_batch(2000)
test_accuracy = accuracy.eval(feed_dict={x: test_x, y_: test_y, keep_prob: 1.0})
print 'testing accuracy = %.2f%%' % (test_accuracy * 100, )
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', type=str, default='images/char-1-groups-1000/',
help='Directory for storing input data')
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)