forked from JackonYang/captcha-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimple_softmax.py
69 lines (52 loc) · 2.27 KB
/
simple_softmax.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# -*- coding:utf-8 -*-
import argparse
import sys
import tensorflow as tf
import input_data
MAX_STEPS = 10000
BATCH_SIZE = 1000
FLAGS = None
def main(_):
# load data
meta, train_data, test_data = input_data.load_data(FLAGS.data_dir, flatten=True)
print 'data loaded'
print 'train images: %s. test images: %s' % (train_data.images.shape[0], test_data.images.shape[0])
LABEL_SIZE = meta['label_size']
IMAGE_SIZE = meta['width'] * meta['height']
print 'label_size: %s, image_size: %s' % (LABEL_SIZE, IMAGE_SIZE)
# variable in the graph for input data
x = tf.placeholder(tf.float32, [None, IMAGE_SIZE])
y_ = tf.placeholder(tf.float32, [None, LABEL_SIZE])
# define the model
W = tf.Variable(tf.zeros([IMAGE_SIZE, LABEL_SIZE]))
b = tf.Variable(tf.zeros([LABEL_SIZE]))
y = tf.matmul(x, W) + b
# Define loss and optimizer
diff = tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)
cross_entropy = tf.reduce_mean(diff)
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
# forword prop
predict = tf.argmax(y, axis=1)
expect = tf.argmax(y_, axis=1)
# evaluate accuracy
correct_prediction = tf.equal(predict, expect)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
with tf.Session() as sess:
tf.global_variables_initializer().run()
# Train
for i in range(MAX_STEPS):
batch_xs, batch_ys = train_data.next_batch(BATCH_SIZE)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
if i % 100 == 0:
# Test trained model
r = sess.run(accuracy, feed_dict={x: test_data.images, y_: test_data.labels})
print 'step = %s, accuracy = %.2f%%' % (i, r * 100)
# final check after looping
r_test = sess.run(accuracy, feed_dict={x: test_data.images, y_: test_data.labels})
print 'testing accuracy = %.2f%%' % (r_test * 100, )
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', type=str, default='images/char-1-groups-1000/',
help='Directory for storing input data')
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)