-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathScript_05_aDMCs_validation.Rmd
820 lines (590 loc) · 39.7 KB
/
Script_05_aDMCs_validation.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
---
title: "aDMCs Validation"
author: "Yunfeng Liu"
date: "1/16/2023"
output: html_document
---
Here,we would like to replicate our aDMCs analysis on X chromosome using two external datasets.
1.Blood DNAm data generated by Johansson et al.: "Continuous Aging of the Human DNA Methylome Throughout the Human Lifespan.PLoS One."
GEO: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE87571
2.Monocytes DNAm data generated by Reynolds et al.: "Age-related variations in the methylome associated with gene expression in human monocytes and T cells. Nat Commun."
GEO: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE56046
```{r}
#set library path.
.libPaths("~/researchdrive/yliu/Rlibs")
```
```{r}
#Load all necessary libraries.
library(minfi)
library(DNAmArray)
library(tidyverse)
library(sva)
library(bacon)
```
```{r}
# Load data
load(file = "Output_01_chrX_betas.RData")
load(file = "Output_02_aDMCs_effectsize_BIOS.RData")
load(file = "Input_05_Johansson_Blood_450k.RData")
load(file = "Input_05_Reynolds_Monocytes_450k.RData")
```
```{r}
# X-methylation profile of females and males using discovery and replication cohort
# BIOS males
dat_mean_BIOS_Xmales<-as.data.frame(rowMeans(assay(betas_Xmales),na.rm = TRUE))
colnames(dat_mean_BIOS_Xmales)<-"BIOS.males"
# BIOS females
dat_mean_BIOS_Xfemales<-as.data.frame(rowMeans(assay(betas_Xfemales),na.rm = TRUE))
colnames(dat_mean_BIOS_Xfemales)<-"BIOS.females"
# Johansson females
dat_mean_Johansson_Blood_Xfemales<-as.data.frame(rowMeans(betas_Johansson_Blood_Xfemales,na.rm = TRUE))
colnames(dat_mean_Johansson_Blood_Xfemales)<-"Johansson.females"
# Johansson males
dat_mean_Johansson_Blood_Xmales<-as.data.frame(rowMeans(betas_Johansson_Blood_Xmales,na.rm = TRUE))
colnames(dat_mean_Johansson_Blood_Xmales)<-"Johansson.males"
# Reynolds females
dat_mean_Reynolds_Mono_Xfemales<-as.data.frame(rowMeans(betas_Reynolds_Mono_Xfemales,na.rm = TRUE))
colnames(dat_mean_Reynolds_Mono_Xfemales)<-"Reynolds.females"
# Reynolds males
dat_mean_Reynolds_Mono_Xmales<-as.data.frame(rowMeans(betas_Reynolds_Mono_Xmales,na.rm = TRUE))
colnames(dat_mean_Reynolds_Mono_Xmales)<-"Reynolds.males"
# Prepare mean X-methylation data in females and males.
dat_mean_BIOS<-cbind(dat_mean_BIOS_Xfemales,dat_mean_BIOS_Xmales)
colnames(dat_mean_BIOS)<-c("BIOS females","BIOS males")
dat_mean_Johansson_Blood<-cbind(dat_mean_Johansson_Blood_Xfemales,dat_mean_Johansson_Blood_Xmales)
colnames(dat_mean_Johansson_Blood)<-c("Johansson females","Johansson males")
dat_mean_Reynolds_Mono<-cbind(dat_mean_Reynolds_Mono_Xfemales,dat_mean_Reynolds_Mono_Xmales)
colnames(dat_mean_Reynolds_Mono)<-c("Reynolds females","Reynolds males")
save(dat_mean_BIOS,dat_mean_Johansson_Blood,dat_mean_Reynolds_Mono,file = "mean X-methylation profile.RData")
tiff("X methylation profile.tiff", units="in", width=8, height=6, res=600,compression = 'lzw')
par(lwd=4)
densityPlot(as.matrix(dat_mean_BIOS),add=T,main="X methylation profile",xlab="Beta values",sampGroups=c("BIOS Females","BIOS Males"),xlim=c(0,1),pal=c("#F08080","#87CEEB"),cex.main=1.5,cex.lab=1.5, cex.axis=1.5,legend = F)
par(lwd=1)
densityPlot(as.matrix(dat_mean_Johansson_Blood),add=F,sampGroups=c("Johansson Females","Johansson Males"),pal=c("#F08080","#87CEEB"),legend = F)
par(lwd=1,lty=2)
densityPlot(as.matrix(dat_mean_Reynolds_Mono),add=F,sampGroups=c("Reynolds Females","Reynolds Males"),pal=c("#F08080","#87CEEB"),legend = F)
dev.off()
```
```{r}
#### aDMCs validation on Johansson blood datasets.
# rank-inverse normal(RIN) transformation for Xfemales and Xmales separately.
RIN <- function(x) {
y <- rank(x, NA)
y <- ppoints(y)[y]
y <- qnorm(y)
x[!is.na(x)] <- y
x
}
RIN.mvalues_Johansson_Blood_Xfemales <- t(apply(mvalues_Johansson_Blood_Xfemales, 1, RIN))
RIN.mvalues_Johansson_Blood_Xmales <- t(apply(mvalues_Johansson_Blood_Xmales, 1, RIN))
```
```{r}
## Prepare SVA
# Johansson Xfemales
## null model:only exclude interest variable
design0_Johansson_Blood_Xfemales = model.matrix(~ CD8T + CD4T + NK + Bcell + Mono + sentrix_position,data=Covariates_Johansson_Blood_Xfemales)
## Full model:all covarites
design_Johansson_Blood_Xfemales <- model.matrix(~Age + CD8T + CD4T + NK + Bcell + Mono + sentrix_position, data=Covariates_Johansson_Blood_Xfemales)
## Estimate Johansson female latent factors by SVA
svobj_Johansson_Blood_Xfemales = sva(RIN.mvalues_Johansson_Blood_Xfemales,design_Johansson_Blood_Xfemales,design0_Johansson_Blood_Xfemales,n.sv=5)
sv_Johansson_Blood_Xfemales <- as.data.frame(svobj_Johansson_Blood_Xfemales$sv)
colnames(sv_Johansson_Blood_Xfemales) <- c('SV1', 'SV2', 'SV3', 'SV4', 'SV5')
# Johansson Xmales
## null model:only exclude interest variable
design0_Johansson_Blood_Xmales = model.matrix(~ CD8T + CD4T + NK + Bcell + Mono + sentrix_position,data=Covariates_Johansson_Blood_Xmales)
## Full model:all covarites
design_Johansson_Blood_Xmales <- model.matrix(~Age + CD8T + CD4T + NK + Bcell + Mono + sentrix_position, data=Covariates_Johansson_Blood_Xmales)
# Estimate Johansson male latent factors by SVA
svobj_Johansson_Blood_Xmales = sva(RIN.mvalues_Johansson_Blood_Xmales,design_Johansson_Blood_Xmales,design0_Johansson_Blood_Xmales,n.sv=5)
sv_Johansson_Blood_Xmales <- as.data.frame(svobj_Johansson_Blood_Xmales$sv)
colnames(sv_Johansson_Blood_Xmales) <- c('SV1', 'SV2', 'SV3', 'SV4', 'SV5')
```
```{r}
# Add estimated latent factors to covariates dataframe.
#Xfemales
Covariates_sv_Johansson_Blood_Xfemales<-cbind(Covariates_Johansson_Blood_Xfemales,sv_Johansson_Blood_Xfemales)
#Xmales
Covariates_sv_Johansson_Blood_Xmales<-cbind(Covariates_Johansson_Blood_Xmales,sv_Johansson_Blood_Xmales)
# Change sentrixt position into factor
Covariates_sv_Johansson_Blood_Xfemales$sentrix_position<-factor(Covariates_sv_Johansson_Blood_Xfemales$sentrix_position)
Covariates_sv_Johansson_Blood_Xmales$sentrix_position<-factor(Covariates_sv_Johansson_Blood_Xmales$sentrix_position)
```
```{r}
#### Construct a Function called runDGLM for Xfemales and Xmales separately.
## Identify aDMCs in Johansson Blood females.
runDGLM_Johansson_Blood_Xfemales <- function(x)
{
dat_Xfemales_dglm <- matrix(nrow=nrow(x), ncol=9)
colnames(dat_Xfemales_dglm)<-c("cgID","effectsize.linear","std.error.linear","t.linear","p.linear","effectsize.disp","std.error.disp","t.disp","p.disp")
for(CpG in 1:nrow(x))
{
print(CpG) #to check progress
probe <- rownames(x)[CpG]
tempdata <- data.frame(Age=Covariates_sv_Johansson_Blood_Xfemales[,2],data = x[probe,],sentrix_position=Covariates_sv_Johansson_Blood_Xfemales[,4],CD8T=Covariates_sv_Johansson_Blood_Xfemales[,5], CD4T=Covariates_sv_Johansson_Blood_Xfemales[,6], NK=Covariates_sv_Johansson_Blood_Xfemales[,7], Bcell=Covariates_sv_Johansson_Blood_Xfemales[,8], Mono=Covariates_sv_Johansson_Blood_Xfemales[,9], SV1=Covariates_sv_Johansson_Blood_Xfemales[,11], SV2=Covariates_sv_Johansson_Blood_Xfemales[,12], SV3=Covariates_sv_Johansson_Blood_Xfemales[,13], SV4=Covariates_sv_Johansson_Blood_Xfemales[,14], SV5=Covariates_sv_Johansson_Blood_Xfemales[,15])
fit_Xfemales <- tryCatch({ dglm(formula = data ~ Age + CD8T + CD4T + NK + Bcell + Mono + sentrix_position + SV1 + SV2 + SV3 + SV4 + SV5, dformula = ~ Age, data=tempdata, family = gaussian(link = identity))},error=identity)
if(is.null(fit_Xfemales$message)){ #good
#extract info about the linear model
effectsize.linear <- summary(fit_Xfemales)$coefficients[2,1]
std.error.linear<-summary(fit_Xfemales)$coefficients[2,2]
t.value.linear <-summary(fit_Xfemales)$coefficients[2,3]
p.value.linear <- summary(fit_Xfemales)$coefficients[2,4]
#extract info about the dispersion model
effectsize.disp <- summary(fit_Xfemales$dispersion.fit)$coefficients[2]
std.error.disp<-summary(fit_Xfemales$dispersion.fit)$coefficients[4]
t.value.disp <- summary(fit_Xfemales$dispersion.fit)$coefficients[6]
p.value.disp <- summary(fit_Xfemales$dispersion.fit)$coefficients[8]
# Summary statistics Output
out <- matrix(c(probe,effectsize.linear,std.error.linear,t.value.linear,p.value.linear,effectsize.disp,std.error.disp,t.value.disp,p.value.disp), ncol=9)
dat_Xfemales_dglm[CpG,] <- out
}else{ #bad
print("Didn't converge")
out <- matrix(c(probe, fit_Xfemales$message, rep(NA, times = 7)), ncol=9)
dat_Xfemales_dglm[CpG,] <- out
}
}
return(dat_Xfemales_dglm)
}
# Run runDGLM function
DGLM_Johansson_Blood_Xfemales<- runDGLM_Johansson_Blood_Xfemales(RIN.mvalues_Johansson_Blood_Xfemales)
DGLM_Johansson_Blood_Xfemales<-data.frame(DGLM_Johansson_Blood_Xfemales)
rownames(DGLM_Johansson_Blood_Xfemales)<-make.names(DGLM_Johansson_Blood_Xfemales$cgID,unique=TRUE)
DGLM_Johansson_Blood_Xfemales<-DGLM_Johansson_Blood_Xfemales[,2:9]
DGLM_Johansson_Blood_Xfemales_errors<-subset(DGLM_Johansson_Blood_Xfemales,is.na(DGLM_Johansson_Blood_Xfemales$t.linear)) # No errors(all CpGs converge)
DGLM_Johansson_Blood_Xfemales_converge<-DGLM_Johansson_Blood_Xfemales
# Convert each column to numerical variable.
DGLM_Johansson_Blood_Xfemales_converge<-as.data.frame(lapply(DGLM_Johansson_Blood_Xfemales_converge,as.numeric))
rownames(DGLM_Johansson_Blood_Xfemales_converge)<-make.names(rownames(DGLM_Johansson_Blood_Xfemales),unique=TRUE)
save(DGLM_Johansson_Blood_Xfemales_converge,file = "Output_05_DGLM_Johansson_Blood_Xfemales_converge.RData")
```
```{r}
## Correct bias and inflation for linear model.
# Xfemales
set.seed(1)
bc_DGLM_Johansson_Blood_Xfemales<- bacon(DGLM_Johansson_Blood_Xfemales_converge[,3])
# Calculate bias and inflation
bias(bc_DGLM_Johansson_Blood_Xfemales) # 0.12
inflation(bc_DGLM_Johansson_Blood_Xfemales) # 1.8
# Save histogram plot of test statistics
tiff("Output_05_Bacon_DGLM_Johansson_Blood_Xfemales.tiff", units="in", width=8, height=6, res=600,compression = 'lzw')
fit(bc_DGLM_Johansson_Blood_Xfemales,xlab="t-statistics",main="aDMCs in Johansson Blood females",n=100)
dev.off()
#Extract the BACON-adjusted t-statistics and p-values
tstats_DGLM_Johansson_Blood_Xfemales<-tstat(bc_DGLM_Johansson_Blood_Xfemales)
pvals_DGLM_Johansson_Blood_Xfemales <-pval(bc_DGLM_Johansson_Blood_Xfemales)
rownames(pvals_DGLM_Johansson_Blood_Xfemales)<-make.names(rownames(DGLM_Johansson_Blood_Xfemales_converge),unique=TRUE)
# Extract BACON-adjusted effectsize.
set.seed(1)
bc_DGLM_Johansson_Blood_Xfemales_es<-bacon(NULL,DGLM_Johansson_Blood_Xfemales_converge[,1],DGLM_Johansson_Blood_Xfemales_converge[,2])
es_DGLM_Johansson_Blood_Xfemales<-es(bc_DGLM_Johansson_Blood_Xfemales_es)
# Extract BACON-adjusted standard error.
set.seed(1)
bc_DGLM_Johansson_Blood_Xfemales_se<-bacon(NULL,DGLM_Johansson_Blood_Xfemales_converge[,1],DGLM_Johansson_Blood_Xfemales_converge[,2])
se_DGLM_Johansson_Blood_Xfemales<-se(bc_DGLM_Johansson_Blood_Xfemales_se)
# Summary Bacon statistics
dat_DGLM_Johansson_Blood_Xfemales_bacon_linear<-as.data.frame(cbind(es_DGLM_Johansson_Blood_Xfemales,se_DGLM_Johansson_Blood_Xfemales,tstats_DGLM_Johansson_Blood_Xfemales,pvals_DGLM_Johansson_Blood_Xfemales))
colnames(dat_DGLM_Johansson_Blood_Xfemales_bacon_linear)<-c("bacon_effectsize_linear","bacon_std.error_linear","bacon_tstatistics_linear","bacon_pval_linear")
rownames(dat_DGLM_Johansson_Blood_Xfemales_bacon_linear)<-make.names(rownames(DGLM_Johansson_Blood_Xfemales_converge),unique = TRUE)
# check females effecsize of aDMCs between BIOS and Johansson
dat_Johansson_Blood_Xfemales_aDMCs<-dat_DGLM_Johansson_Blood_Xfemales_bacon_linear[rownames(df_aDMCs_effectsize_BIOS),]
df_Johansson_validation_females<-cbind(dat_Johansson_Blood_Xfemales_aDMCs[,1],df_aDMCs_effectsize_BIOS[,-2])
colnames(df_Johansson_validation_females)<-c("Johansson","BIOS","aDMCs")
```
```{r}
#### Construct a Function called runDGLM for Xfemales and Xmales separately.
## Identify aDMCs in Johansson Blood males.
runDGLM_Johansson_Blood_Xmales <- function(x)
{
dat_Xmales_dglm <- matrix(nrow=nrow(x), ncol=9)
colnames(dat_Xmales_dglm)<-c("cgID","effectsize.linear","std.error.linear","t.linear","p.linear","effectsize.disp","std.error.disp","t.disp","p.disp")
for(CpG in 1:nrow(x))
{
print(CpG) #to check progress
probe <- rownames(x)[CpG]
tempdata <- data.frame(Age=Covariates_sv_Johansson_Blood_Xmales[,2],data = x[probe,],sentrix_position=Covariates_sv_Johansson_Blood_Xmales[,4],CD8T=Covariates_sv_Johansson_Blood_Xmales[,5], CD4T=Covariates_sv_Johansson_Blood_Xmales[,6], NK=Covariates_sv_Johansson_Blood_Xmales[,7], Bcell=Covariates_sv_Johansson_Blood_Xmales[,8], Mono=Covariates_sv_Johansson_Blood_Xmales[,9], SV1=Covariates_sv_Johansson_Blood_Xmales[,11], SV2=Covariates_sv_Johansson_Blood_Xmales[,12], SV3=Covariates_sv_Johansson_Blood_Xmales[,13], SV4=Covariates_sv_Johansson_Blood_Xmales[,14], SV5=Covariates_sv_Johansson_Blood_Xmales[,15])
fit_Xmales <- tryCatch({ dglm(formula = data ~ Age + CD8T + CD4T + NK + Bcell + Mono + sentrix_position + SV1 + SV2 + SV3 + SV4 + SV5, dformula = ~ Age, data=tempdata, family = gaussian(link = identity))},error=identity)
if(is.null(fit_Xmales$message)){ #good
#extract info about the linear model
effectsize.linear <- summary(fit_Xmales)$coefficients[2,1]
std.error.linear<-summary(fit_Xmales)$coefficients[2,2]
t.value.linear <-summary(fit_Xmales)$coefficients[2,3]
p.value.linear <- summary(fit_Xmales)$coefficients[2,4]
#extract info about the dispersion model
effectsize.disp <- summary(fit_Xmales$dispersion.fit)$coefficients[2]
std.error.disp<-summary(fit_Xmales$dispersion.fit)$coefficients[4]
t.value.disp <- summary(fit_Xmales$dispersion.fit)$coefficients[6]
p.value.disp <- summary(fit_Xmales$dispersion.fit)$coefficients[8]
# Summary statistics Output
out <- matrix(c(probe,effectsize.linear,std.error.linear,t.value.linear,p.value.linear,effectsize.disp,std.error.disp,t.value.disp,p.value.disp), ncol=9)
dat_Xmales_dglm[CpG,] <- out
}else{ #bad
print("Didn't converge")
out <- matrix(c(probe, fit_Xmales$message, rep(NA, times = 7)), ncol=9)
dat_Xmales_dglm[CpG,] <- out
}
}
return(dat_Xmales_dglm)
}
# Run runDGLM function
DGLM_Johansson_Blood_Xmales<- runDGLM_Johansson_Blood_Xmales(RIN.mvalues_Johansson_Blood_Xmales)
DGLM_Johansson_Blood_Xmales<-data.frame(DGLM_Johansson_Blood_Xmales)
rownames(DGLM_Johansson_Blood_Xmales)<-make.names(DGLM_Johansson_Blood_Xmales$cgID,unique=TRUE)
DGLM_Johansson_Blood_Xmales<-DGLM_Johansson_Blood_Xmales[,2:9]
DGLM_Johansson_Blood_Xmales_errors<-subset(DGLM_Johansson_Blood_Xmales,is.na(DGLM_Johansson_Blood_Xmales$t.linear)) # No errors(all CpGs converge)
DGLM_Johansson_Blood_Xmales_converge<-DGLM_Johansson_Blood_Xmales
# Convert each column to numerical variable.
DGLM_Johansson_Blood_Xmales_converge<-as.data.frame(lapply(DGLM_Johansson_Blood_Xmales_converge,as.numeric))
rownames(DGLM_Johansson_Blood_Xmales_converge)<-make.names(rownames(DGLM_Johansson_Blood_Xmales),unique=TRUE)
save(DGLM_Johansson_Blood_Xmales_converge,file = "Output_05_DGLM_Johansson_Blood_Xmales_converge.RData")
```
```{r}
## Correct bias and inflation for linear model.
# Xmales
set.seed(1)
bc_DGLM_Johansson_Blood_Xmales<- bacon(DGLM_Johansson_Blood_Xmales_converge[,3])
# Calculate bias and inflation
bias(bc_DGLM_Johansson_Blood_Xmales) # -0.2
inflation(bc_DGLM_Johansson_Blood_Xmales) # 1.6
# Save histogram plot of test statistics
tiff("Output_05_Bacon_DGLM_Johansson_Blood_Xmales.tiff", units="in", width=8, height=6, res=600,compression = 'lzw')
fit(bc_DGLM_Johansson_Blood_Xmales,xlab="t-statistics",main="aDMCs in Johansson Blood males",n=100)
dev.off()
#Extract the BACON-adjusted t-statistics and p-values
tstats_DGLM_Johansson_Blood_Xmales<-tstat(bc_DGLM_Johansson_Blood_Xmales)
pvals_DGLM_Johansson_Blood_Xmales <-pval(bc_DGLM_Johansson_Blood_Xmales)
rownames(pvals_DGLM_Johansson_Blood_Xmales)<-make.names(rownames(DGLM_Johansson_Blood_Xmales_converge),unique=TRUE)
# Extract BACON-adjusted effectsize.
set.seed(1)
bc_DGLM_Johansson_Blood_Xmales_es<-bacon(NULL,DGLM_Johansson_Blood_Xmales_converge[,1],DGLM_Johansson_Blood_Xmales_converge[,2])
es_DGLM_Johansson_Blood_Xmales<-es(bc_DGLM_Johansson_Blood_Xmales_es)
# Extract BACON-adjusted standard error.
set.seed(1)
bc_DGLM_Johansson_Blood_Xmales_se<-bacon(NULL,DGLM_Johansson_Blood_Xmales_converge[,1],DGLM_Johansson_Blood_Xmales_converge[,2])
se_DGLM_Johansson_Blood_Xmales<-se(bc_DGLM_Johansson_Blood_Xmales_se)
# Summary Bacon statistics
dat_DGLM_Johansson_Blood_Xmales_bacon_linear<-as.data.frame(cbind(es_DGLM_Johansson_Blood_Xmales,se_DGLM_Johansson_Blood_Xmales,tstats_DGLM_Johansson_Blood_Xmales,pvals_DGLM_Johansson_Blood_Xmales))
colnames(dat_DGLM_Johansson_Blood_Xmales_bacon_linear)<-c("bacon_effectsize_linear","bacon_std.error_linear","bacon_tstatistics_linear","bacon_pval_linear")
rownames(dat_DGLM_Johansson_Blood_Xmales_bacon_linear)<-make.names(rownames(DGLM_Johansson_Blood_Xmales_converge),unique = TRUE)
# check males effecsize of aDMCs between BIOS and Hannum
dat_Johansson_Blood_Xmales_aDMCs<-dat_DGLM_Johansson_Blood_Xmales_bacon_linear[rownames(df_aDMCs_effectsize_BIOS),]
df_Johansson_validation_males<-cbind(dat_Johansson_Blood_Xmales_aDMCs[,1],df_aDMCs_effectsize_BIOS[,-1])
colnames(df_Johansson_validation_males)<-c("Johansson","BIOS","aDMCs")
```
```{r}
# save the validation data of effect size
save(df_Johansson_validation_females,df_Johansson_validation_males,file="Output_05_Johansson_validation.RData")
```
```{r}
# Extract 80(33+47) female p-values and 1837(1790+47) male p-values.
dat_Johansson_Blood_Xfemales_aDMCs$aDMCs<-df_aDMCs_effectsize_BIOS$aDMCs
df_aDMCs_females_Johansson_Blood<-filter(dat_Johansson_Blood_Xfemales_aDMCs,aDMCs=="female-specific"|aDMCs=="both-sex")
pvals_aDMCs_Xfemales_Johansson_Blood<-as.data.frame(pvals_DGLM_Johansson_Blood_Xfemales[rownames(df_aDMCs_females_Johansson_Blood),])
colnames(pvals_aDMCs_Xfemales_Johansson_Blood)<-"pval_females"
dat_Johansson_Blood_Xmales_aDMCs$aDMCs<-df_aDMCs_effectsize_BIOS$aDMCs
df_aDMCs_males_Johansson_Blood<-filter(dat_Johansson_Blood_Xmales_aDMCs,aDMCs=="male-specific"|aDMCs=="both-sex")
pvals_aDMCs_Xmales_Johansson_Blood<-as.data.frame(pvals_DGLM_Johansson_Blood_Xmales[rownames(df_aDMCs_males_Johansson_Blood),])
colnames(pvals_aDMCs_Xmales_Johansson_Blood)<-"pval_males"
# Perform FDR correction for 1588 pvals(80+1837)
padjs_aDMCs_Johansson_Blood<-as.data.frame(p.adjust(c(pvals_aDMCs_Xfemales_Johansson_Blood$pval_females,pvals_aDMCs_Xmales_Johansson_Blood$pval_males),method="BH"))
colnames(padjs_aDMCs_Johansson_Blood)<-"bacon_p.adj_linear"
# check males (how many of 1837) and females (how many of 80) separately how many were FDR significant
# 79 female aDMCs are still FDR significant in Hannum blood data.
padjs_aDMCs_females_Johansson_Blood<-as.data.frame(padjs_aDMCs_Johansson_Blood[1:80,])
colnames(padjs_aDMCs_females_Johansson_Blood)<-"bacon_p.adj_linear"
df_aDMCs_females_Johansson_Blood$bacon_p.adj_linear<-padjs_aDMCs_females_Johansson_Blood$bacon_p.adj_linear
df_aDMCs_females_Johansson_Blood<-filter(df_aDMCs_females_Johansson_Blood,bacon_p.adj_linear<0.05)
df_aDMCs_females_effectsize_up_Johansson<-filter(df_aDMCs_females_Johansson_Blood,bacon_effectsize_linear>0) # 38
df_aDMCs_females_effectsize_down_Johansson<-filter(df_aDMCs_females_Johansson_Blood,bacon_effectsize_linear<0) # 41
# 1371 male aDMCs are still FDR significant in Johansson blood data.
padjs_aDMCs_males_Johansson_Blood<-as.data.frame(padjs_aDMCs_Johansson_Blood[81:1917,])
colnames(padjs_aDMCs_males_Johansson_Blood)<-"bacon_p.adj_linear"
df_aDMCs_males_Johansson_Blood$bacon_p.adj_linear<-padjs_aDMCs_males_Johansson_Blood$bacon_p.adj_linear
df_aDMCs_males_Johansson_Blood<-filter(df_aDMCs_males_Johansson_Blood,bacon_p.adj_linear<0.05)
df_aDMCs_males_effectsize_up_Johansson<-filter(df_aDMCs_males_Johansson_Blood,bacon_effectsize_linear>0) # 839
df_aDMCs_males_effectsize_down_Johansson<-filter(df_aDMCs_males_Johansson_Blood,bacon_effectsize_linear<0) # 532
save(df_aDMCs_females_effectsize_up_Johansson,df_aDMCs_females_effectsize_down_Johansson,df_aDMCs_females_Johansson_Blood,df_aDMCs_males_effectsize_up_Johansson,df_aDMCs_males_effectsize_down_Johansson,df_aDMCs_males_Johansson_Blood,file = "Output_05_Johansson_Catogue of aDMCs.RData")
```
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
```{r}
## aDMCs validation on Reynolds Mono datasets.
# rank-inverse normal(RIN) transformation for Xfemales and Xmales separately.
RIN.mvalues_Reynolds_Mono_Xfemales <- t(apply(mvalues_Reynolds_Mono_Xfemales, 1, RIN))
RIN.mvalues_Reynolds_Mono_Xmales <- t(apply(mvalues_Reynolds_Mono_Xmales, 1, RIN))
```
```{r}
## Prepare SVA
# Reynolds Mono Xfemales
## null model:only exclude interest variable
design0_Reynolds_Mono_Xfemales = model.matrix(~ Bcell + Tcell + NK + Neutro + sentrix_position,data=Covariates_Reynolds_Mono_Xfemales)
## Full model:all covarites
design_Reynolds_Mono_Xfemales <- model.matrix(~Age + Bcell + Tcell + NK + Neutro + sentrix_position, data=Covariates_Reynolds_Mono_Xfemales)
## Estimate Reynolds female latent factors by SVA
svobj_Reynolds_Mono_Xfemales = sva(RIN.mvalues_Reynolds_Mono_Xfemales,design_Reynolds_Mono_Xfemales,design0_Reynolds_Mono_Xfemales,n.sv=5)
sv_Reynolds_Mono_Xfemales <- as.data.frame(svobj_Reynolds_Mono_Xfemales$sv)
colnames(sv_Reynolds_Mono_Xfemales) <- c('SV1', 'SV2', 'SV3', 'SV4', 'SV5')
# Reynolds Mono Xmales
## null model:only exclude interest variable
design0_Reynolds_Mono_Xmales = model.matrix(~ Bcell + Tcell + NK + Neutro + sentrix_position,data=Covariates_Reynolds_Mono_Xmales)
## Full model:all covarites
design_Reynolds_Mono_Xmales <- model.matrix(~Age + Bcell + Tcell + NK + Neutro + sentrix_position, data=Covariates_Reynolds_Mono_Xmales)
# Estimate Reynolds male latent factors by SVA
svobj_Reynolds_Mono_Xmales = sva(RIN.mvalues_Reynolds_Mono_Xmales,design_Reynolds_Mono_Xmales,design0_Reynolds_Mono_Xmales,n.sv=5)
sv_Reynolds_Mono_Xmales <- as.data.frame(svobj_Reynolds_Mono_Xmales$sv)
colnames(sv_Reynolds_Mono_Xmales) <- c('SV1', 'SV2', 'SV3', 'SV4', 'SV5')
```
```{r}
# Add estimated latent factors to covariates dataframe.
#Xfemales
Covariates_sv_Reynolds_Mono_Xfemales<-cbind(Covariates_Reynolds_Mono_Xfemales,sv_Reynolds_Mono_Xfemales)
#Xmales
Covariates_sv_Reynolds_Mono_Xmales<-cbind(Covariates_Reynolds_Mono_Xmales,sv_Reynolds_Mono_Xmales)
# Change sentrixt position into factor
Covariates_sv_Reynolds_Mono_Xfemales$sentrix_position<-factor(Covariates_sv_Reynolds_Mono_Xfemales$sentrix_position)
Covariates_sv_Reynolds_Mono_Xmales$sentrix_position<-factor(Covariates_sv_Reynolds_Mono_Xmales$sentrix_position)
```
```{r}
#### Construct a Function called runDGLM for Xfemales and Xmales separately.
## Identify aDMCs in Reynolds Mono females.
runDGLM_Reynolds_Mono_Xfemales <- function(x)
{
dat_Xfemales_dglm <- matrix(nrow=nrow(x), ncol=9)
colnames(dat_Xfemales_dglm)<-c("cgID","effectsize.linear","std.error.linear","t.linear","p.linear","effectsize.disp","std.error.disp","t.disp","p.disp")
for(CpG in 1:nrow(x))
{
print(CpG) #to check progress
probe <- rownames(x)[CpG]
tempdata <- data.frame(Age=Covariates_sv_Reynolds_Mono_Xfemales[,2],data = x[probe,],sentrix_position=Covariates_sv_Reynolds_Mono_Xfemales[,3],Bcell=Covariates_sv_Reynolds_Mono_Xfemales[,4],Tcell=Covariates_sv_Reynolds_Mono_Xfemales[,5], NK=Covariates_sv_Reynolds_Mono_Xfemales[,6], Neutro=Covariates_sv_Reynolds_Mono_Xfemales[,7], SV1=Covariates_sv_Reynolds_Mono_Xfemales[,9], SV2=Covariates_sv_Reynolds_Mono_Xfemales[,10], SV3=Covariates_sv_Reynolds_Mono_Xfemales[,11], SV4=Covariates_sv_Reynolds_Mono_Xfemales[,12], SV5=Covariates_sv_Reynolds_Mono_Xfemales[,13])
fit_Xfemales <- tryCatch({ dglm(formula = data ~ Age + Bcell + Tcell + NK + Neutro + sentrix_position + SV1 + SV2 + SV3 + SV4 + SV5, dformula = ~ Age, data=tempdata, family = gaussian(link = identity))},error=identity)
if(is.null(fit_Xfemales$message)){ #good
#extract info about the linear model
effectsize.linear <- summary(fit_Xfemales)$coefficients[2,1]
std.error.linear<-summary(fit_Xfemales)$coefficients[2,2]
t.value.linear <-summary(fit_Xfemales)$coefficients[2,3]
p.value.linear <- summary(fit_Xfemales)$coefficients[2,4]
#extract info about the dispersion model
effectsize.disp <- summary(fit_Xfemales$dispersion.fit)$coefficients[2]
std.error.disp<-summary(fit_Xfemales$dispersion.fit)$coefficients[4]
t.value.disp <- summary(fit_Xfemales$dispersion.fit)$coefficients[6]
p.value.disp <- summary(fit_Xfemales$dispersion.fit)$coefficients[8]
# Summary statistics Output
out <- matrix(c(probe,effectsize.linear,std.error.linear,t.value.linear,p.value.linear,effectsize.disp,std.error.disp,t.value.disp,p.value.disp), ncol=9)
dat_Xfemales_dglm[CpG,] <- out
}else{ #bad
print("Didn't converge")
out <- matrix(c(probe, fit_Xfemales$message, rep(NA, times = 7)), ncol=9)
dat_Xfemales_dglm[CpG,] <- out
}
}
return(dat_Xfemales_dglm)
}
# Run runDGLM function
DGLM_Reynolds_Mono_Xfemales<- runDGLM_Reynolds_Mono_Xfemales(RIN.mvalues_Reynolds_Mono_Xfemales)
DGLM_Reynolds_Mono_Xfemales<-data.frame(DGLM_Reynolds_Mono_Xfemales)
rownames(DGLM_Reynolds_Mono_Xfemales)<-make.names(DGLM_Reynolds_Mono_Xfemales$cgID,unique=TRUE)
DGLM_Reynolds_Mono_Xfemales<-DGLM_Reynolds_Mono_Xfemales[,2:9]
DGLM_Reynolds_Mono_Xfemales_errors<-subset(DGLM_Reynolds_Mono_Xfemales,is.na(DGLM_Reynolds_Mono_Xfemales$t.linear)) # No errors(all CpGs converge)
DGLM_Reynolds_Mono_Xfemales_converge<-DGLM_Reynolds_Mono_Xfemales
# Convert each column to numerical variable.
DGLM_Reynolds_Mono_Xfemales_converge<-as.data.frame(lapply(DGLM_Reynolds_Mono_Xfemales_converge,as.numeric))
rownames(DGLM_Reynolds_Mono_Xfemales_converge)<-make.names(rownames(DGLM_Reynolds_Mono_Xfemales),unique=TRUE)
save(DGLM_Reynolds_Mono_Xfemales_converge,file = "Output_05_DGLM_Reynolds_Mono_Xfemales_converge.RData")
```
```{r}
## Correct bias and inflation for linear model.
# Xfemales
set.seed(1)
bc_DGLM_Reynolds_Mono_Xfemales<- bacon(DGLM_Reynolds_Mono_Xfemales_converge[,3])
# Calculate bias and inflation
bias(bc_DGLM_Reynolds_Mono_Xfemales) # -0.06
inflation(bc_DGLM_Reynolds_Mono_Xfemales) # 1.2
# Save histogram plot of test statistics
tiff("Output_05_Bacon_DGLM_Reynolds_Mono_Xfemales.tiff", units="in", width=8, height=6, res=600,compression = 'lzw')
fit(bc_DGLM_Reynolds_Mono_Xfemales,xlab="t-statistics",main="aDMCs in Reynolds Mono females",n=100)
dev.off()
#Extract the BACON-adjusted t-statistics and p-values
tstats_DGLM_Reynolds_Mono_Xfemales<-tstat(bc_DGLM_Reynolds_Mono_Xfemales)
pvals_DGLM_Reynolds_Mono_Xfemales <-pval(bc_DGLM_Reynolds_Mono_Xfemales)
rownames(pvals_DGLM_Reynolds_Mono_Xfemales)<-make.names(rownames(DGLM_Reynolds_Mono_Xfemales_converge),unique=TRUE)
# Extract BACON-adjusted effectsize.
set.seed(1)
bc_DGLM_Reynolds_Mono_Xfemales_es<-bacon(NULL,DGLM_Reynolds_Mono_Xfemales_converge[,1],DGLM_Reynolds_Mono_Xfemales_converge[,2])
es_DGLM_Reynolds_Mono_Xfemales<-es(bc_DGLM_Reynolds_Mono_Xfemales_es)
# Extract BACON-adjusted standard error.
set.seed(1)
bc_DGLM_Reynolds_Mono_Xfemales_se<-bacon(NULL,DGLM_Reynolds_Mono_Xfemales_converge[,1],DGLM_Reynolds_Mono_Xfemales_converge[,2])
se_DGLM_Reynolds_Mono_Xfemales<-se(bc_DGLM_Reynolds_Mono_Xfemales_se)
# Summary Bacon statistics
dat_DGLM_Reynolds_Mono_Xfemales_bacon_linear<-as.data.frame(cbind(es_DGLM_Reynolds_Mono_Xfemales,se_DGLM_Reynolds_Mono_Xfemales,tstats_DGLM_Reynolds_Mono_Xfemales,pvals_DGLM_Reynolds_Mono_Xfemales))
colnames(dat_DGLM_Reynolds_Mono_Xfemales_bacon_linear)<-c("bacon_effectsize_linear","bacon_std.error_linear","bacon_tstatistics_linear","bacon_pval_linear")
rownames(dat_DGLM_Reynolds_Mono_Xfemales_bacon_linear)<-make.names(rownames(DGLM_Reynolds_Mono_Xfemales_converge),unique = TRUE)
# check females effecsize of aDMCs between BIOS and Reynolds Mono
dat_Reynolds_Mono_Xfemales_aDMCs<-dat_DGLM_Reynolds_Mono_Xfemales_bacon_linear[rownames(df_aDMCs_effectsize_BIOS),]
df_Reynolds_validation_females<-cbind(dat_Reynolds_Mono_Xfemales_aDMCs[,1],df_aDMCs_effectsize_BIOS[,-2])
colnames(df_Reynolds_validation_females)<-c("Reynolds","BIOS","aDMCs")
```
```{r}
#### Construct a Function called runDGLM for Xfemales and Xmales separately.
## Identify aDMCs in Liu Mono males.
runDGLM_Reynolds_Mono_Xmales <- function(x)
{
dat_Xmales_dglm <- matrix(nrow=nrow(x), ncol=9)
colnames(dat_Xmales_dglm)<-c("cgID","effectsize.linear","std.error.linear","t.linear","p.linear","effectsize.disp","std.error.disp","t.disp","p.disp")
for(CpG in 1:nrow(x))
{
print(CpG) #to check progress
probe <- rownames(x)[CpG]
tempdata <- data.frame(Age=Covariates_sv_Reynolds_Mono_Xmales[,2],data = x[probe,],sentrix_position=Covariates_sv_Reynolds_Mono_Xmales[,3],Bcell=Covariates_sv_Reynolds_Mono_Xmales[,4],Tcell=Covariates_sv_Reynolds_Mono_Xmales[,5], NK=Covariates_sv_Reynolds_Mono_Xmales[,6],Neutro=Covariates_sv_Reynolds_Mono_Xmales[,7],SV1=Covariates_sv_Reynolds_Mono_Xmales[,9],SV2=Covariates_sv_Reynolds_Mono_Xmales[,10],SV3=Covariates_sv_Reynolds_Mono_Xmales[,11],SV4=Covariates_sv_Reynolds_Mono_Xmales[,12],SV5=Covariates_sv_Reynolds_Mono_Xmales[,13])
fit_Xmales <- tryCatch({ dglm(formula = data ~ Age + Bcell + Tcell + NK + Neutro + sentrix_position + SV1 + SV2 + SV3 + SV4 + SV5, dformula = ~ Age, data=tempdata, family = gaussian(link = identity))},error=identity)
if(is.null(fit_Xmales$message)){ #good
#extract info about the linear model
effectsize.linear <- summary(fit_Xmales)$coefficients[2,1]
std.error.linear<-summary(fit_Xmales)$coefficients[2,2]
t.value.linear <-summary(fit_Xmales)$coefficients[2,3]
p.value.linear <- summary(fit_Xmales)$coefficients[2,4]
#extract info about the dispersion model
effectsize.disp <- summary(fit_Xmales$dispersion.fit)$coefficients[2]
std.error.disp<-summary(fit_Xmales$dispersion.fit)$coefficients[4]
t.value.disp <- summary(fit_Xmales$dispersion.fit)$coefficients[6]
p.value.disp <- summary(fit_Xmales$dispersion.fit)$coefficients[8]
# Summary statistics Output
out <- matrix(c(probe,effectsize.linear,std.error.linear,t.value.linear,p.value.linear,effectsize.disp,std.error.disp,t.value.disp,p.value.disp), ncol=9)
dat_Xmales_dglm[CpG,] <- out
}else{ #bad
print("Didn't converge")
out <- matrix(c(probe, fit_Xmales$message, rep(NA, times = 7)), ncol=9)
dat_Xmales_dglm[CpG,] <- out
}
}
return(dat_Xmales_dglm)
}
# Run runDGLM function
DGLM_Reynolds_Mono_Xmales<- runDGLM_Reynolds_Mono_Xmales(RIN.mvalues_Reynolds_Mono_Xmales)
DGLM_Reynolds_Mono_Xmales<-data.frame(DGLM_Reynolds_Mono_Xmales)
rownames(DGLM_Reynolds_Mono_Xmales)<-make.names(DGLM_Reynolds_Mono_Xmales$cgID,unique=TRUE)
DGLM_Reynolds_Mono_Xmales<-DGLM_Reynolds_Mono_Xmales[,2:9]
DGLM_Reynolds_Mono_Xmales_errors<-subset(DGLM_Reynolds_Mono_Xmales,is.na(DGLM_Reynolds_Mono_Xmales$t.linear)) # No errors(all CpGs converge)
DGLM_Reynolds_Mono_Xmales_converge<-DGLM_Reynolds_Mono_Xmales
# Convert each column to numerical variable.
DGLM_Reynolds_Mono_Xmales_converge<-as.data.frame(lapply(DGLM_Reynolds_Mono_Xmales_converge,as.numeric))
rownames(DGLM_Reynolds_Mono_Xmales_converge)<-make.names(rownames(DGLM_Reynolds_Mono_Xmales),unique=TRUE)
save(DGLM_Reynolds_Mono_Xmales_converge,file = "Output_05_DGLM_Reynolds_Mono_Xmales_converge.RData")
```
```{r}
## Correct bias and inflation for linear model.
# Xmales
set.seed(1)
bc_DGLM_Reynolds_Mono_Xmales<- bacon(DGLM_Reynolds_Mono_Xmales_converge[,3])
# Calculate bias and inflation
bias(bc_DGLM_Reynolds_Mono_Xmales) # -0.05
inflation(bc_DGLM_Reynolds_Mono_Xmales) # 1.15
# Save histogram plot of test statistics
tiff("Output_05_Bacon_DGLM_Reynolds_Mono_Xmales.tiff", units="in", width=8, height=6, res=600,compression = 'lzw')
fit(bc_DGLM_Reynolds_Mono_Xmales,xlab="t-statistics",main="aDMCs in Reynolds Mono males",n=100)
dev.off()
#Extract the BACON-adjusted t-statistics and p-values
tstats_DGLM_Reynolds_Mono_Xmales<-tstat(bc_DGLM_Reynolds_Mono_Xmales)
pvals_DGLM_Reynolds_Mono_Xmales <-pval(bc_DGLM_Reynolds_Mono_Xmales)
rownames(pvals_DGLM_Reynolds_Mono_Xmales)<-make.names(rownames(DGLM_Reynolds_Mono_Xmales_converge),unique=TRUE)
# Extract BACON-adjusted effectsize.
set.seed(1)
bc_DGLM_Reynolds_Mono_Xmales_es<-bacon(NULL,DGLM_Reynolds_Mono_Xmales_converge[,1],DGLM_Reynolds_Mono_Xmales_converge[,2])
es_DGLM_Reynolds_Mono_Xmales<-es(bc_DGLM_Reynolds_Mono_Xmales_es)
# Extract BACON-adjusted standard error.
set.seed(1)
bc_DGLM_Reynolds_Mono_Xmales_se<-bacon(NULL,DGLM_Reynolds_Mono_Xmales_converge[,1],DGLM_Reynolds_Mono_Xmales_converge[,2])
se_DGLM_Reynolds_Mono_Xmales<-se(bc_DGLM_Reynolds_Mono_Xmales_se)
# Summary Bacon statistics
dat_DGLM_Reynolds_Mono_Xmales_bacon_linear<-as.data.frame(cbind(es_DGLM_Reynolds_Mono_Xmales,se_DGLM_Reynolds_Mono_Xmales,tstats_DGLM_Reynolds_Mono_Xmales,pvals_DGLM_Reynolds_Mono_Xmales))
colnames(dat_DGLM_Reynolds_Mono_Xmales_bacon_linear)<-c("bacon_effectsize_linear","bacon_std.error_linear","bacon_tstatistics_linear","bacon_pval_linear")
rownames(dat_DGLM_Reynolds_Mono_Xmales_bacon_linear)<-make.names(rownames(DGLM_Reynolds_Mono_Xmales_converge),unique = TRUE)
# check males effecsize of aDMCs between BIOS and Reynolds Mono
dat_Reynolds_Mono_Xmales_aDMCs<-dat_DGLM_Reynolds_Mono_Xmales_bacon_linear[rownames(df_aDMCs_effectsize_BIOS),]
df_Reynolds_validation_males<-cbind(dat_Reynolds_Mono_Xmales_aDMCs[,1],df_aDMCs_effectsize_BIOS[,-1])
colnames(df_Reynolds_validation_males)<-c("Reynolds","BIOS","aDMCs")
```
```{r}
# save the validation data of effect size
save(df_Reynolds_validation_females,df_Reynolds_validation_males,file="Output_05_Reynolds_validation.RData")
```
```{r}
# Extract 80(33+47) female p-values and 1837(1790+47) male p-values.
dat_Reynolds_Mono_Xfemales_aDMCs$aDMCs<-df_aDMCs_effectsize_BIOS$aDMCs
df_aDMCs_females_Reynolds_Mono<-filter(dat_Reynolds_Mono_Xfemales_aDMCs,aDMCs=="female-specific"|aDMCs=="both-sex")
pvals_aDMCs_Xfemales_Reynolds_Mono<-as.data.frame(pvals_DGLM_Reynolds_Mono_Xfemales[rownames(df_aDMCs_females_Reynolds_Mono),])
colnames(pvals_aDMCs_Xfemales_Reynolds_Mono)<-"pval_females"
dat_Reynolds_Mono_Xmales_aDMCs$aDMCs<-df_aDMCs_effectsize_BIOS$aDMCs
df_aDMCs_males_Reynolds_Mono<-filter(dat_Reynolds_Mono_Xmales_aDMCs,aDMCs=="male-specific"|aDMCs=="both-sex")
pvals_aDMCs_Xmales_Reynolds_Mono<-as.data.frame(pvals_DGLM_Reynolds_Mono_Xmales[rownames(df_aDMCs_males_Reynolds_Mono),])
colnames(pvals_aDMCs_Xmales_Reynolds_Mono)<-"pval_males"
# Perform FDR correction for 1917 pvals(80+1837)
padjs_aDMCs_Reynolds_Mono<-as.data.frame(p.adjust(c(pvals_aDMCs_Xfemales_Reynolds_Mono$pval_females,pvals_aDMCs_Xmales_Reynolds_Mono$pval_males),method="BH"))
colnames(padjs_aDMCs_Reynolds_Mono)<-"bacon_p.adj_linear"
# check males (how many of 1837) and females (how many of 80) separately how many were FDR significant
# 34 female aDMCs are still FDR significant in Reynolds Mono data.
padjs_aDMCs_females_Reynolds_Mono<-as.data.frame(padjs_aDMCs_Reynolds_Mono[1:80,])
colnames(padjs_aDMCs_females_Reynolds_Mono)<-"bacon_p.adj_linear"
df_aDMCs_females_Reynolds_Mono$bacon_p.adj_linear<-padjs_aDMCs_females_Reynolds_Mono$bacon_p.adj_linear
df_aDMCs_females_Reynolds_Mono<-filter(df_aDMCs_females_Reynolds_Mono,bacon_p.adj_linear<0.05)
df_aDMCs_females_effectsize_up_Reynolds<-filter(df_aDMCs_females_Reynolds_Mono,bacon_effectsize_linear>0) # 10
df_aDMCs_females_effectsize_down_Reynolds<-filter(df_aDMCs_females_Reynolds_Mono,bacon_effectsize_linear<0) # 24
# 340 male aDMCs are still FDR significant in Reynolds Mono data.
padjs_aDMCs_males_Reynolds_Mono<-as.data.frame(padjs_aDMCs_Reynolds_Mono[81:1917,])
colnames(padjs_aDMCs_males_Reynolds_Mono)<-"bacon_p.adj_linear"
df_aDMCs_males_Reynolds_Mono$bacon_p.adj_linear<-padjs_aDMCs_males_Reynolds_Mono$bacon_p.adj_linear
df_aDMCs_males_Reynolds_Mono<-filter(df_aDMCs_males_Reynolds_Mono,bacon_p.adj_linear<0.05)
df_aDMCs_males_effectsize_up_Reynolds<-filter(df_aDMCs_males_Reynolds_Mono,bacon_effectsize_linear>0) # 145
df_aDMCs_males_effectsize_down_Reynolds<-filter(df_aDMCs_males_Reynolds_Mono,bacon_effectsize_linear<0) # 195
save(df_aDMCs_females_effectsize_up_Reynolds,df_aDMCs_females_effectsize_down_Reynolds,df_aDMCs_females_Reynolds_Mono,df_aDMCs_males_effectsize_up_Reynolds,df_aDMCs_males_effectsize_down_Reynolds,df_aDMCs_males_Reynolds_Mono,file = "Output_05_Reynolds_Catogue of aDMCs.RData")
```
```{r}
# Effect size of aDMCs between external datasets and BIOS.
df_Johansson_validation_females$tag<-"Johansson Blood"
df_Johansson_validation_females$sex<-"Females"
df_Johansson_validation_males$tag<-"Johansson Blood"
df_Johansson_validation_males$sex<-"Males"
df_Reynolds_validation_females$tag<-"Reynolds Monocytes"
df_Reynolds_validation_females$sex<-"Females"
df_Reynolds_validation_males$tag<-"Reynolds Monocytes"
df_Reynolds_validation_males$sex<-"Males"
# Combined 4 datasets.
colnames(df_Johansson_validation_females)[1]<-"External.datasets"
colnames(df_Johansson_validation_males)[1]<-"External.datasets"
colnames(df_Reynolds_validation_females)[1]<-"External.datasets"
colnames(df_Reynolds_validation_males)[1]<-"External.datasets"
df_aDMCs_validation<-rbind(df_Johansson_validation_females,df_Johansson_validation_males,df_Reynolds_validation_females,df_Reynolds_validation_males)
df_aDMCs_validation$tag<-factor(df_aDMCs_validation$tag,levels = c("Johansson Blood","Reynolds Monocytes"))
df_aDMCs_validation$sex<-factor(df_aDMCs_validation$sex,
levels = c("Males","Females"))
df_aDMCs_validation$aDMCs<-factor(df_aDMCs_validation$aDMCs,levels = c("female-specific","male-specific","both-sex"))
tiff("Output_05_Validation of aDMCs.tiff", units="in", width=16, height=13, res=600,compression = 'lzw')
ggplot(df_aDMCs_validation) +
aes(x = BIOS,y = External.datasets,color=aDMCs) +
facet_grid(tag~sex,switch ="y",scales = "fixed") +
geom_point(size = 3, alpha = 0.5) +
geom_vline(aes(xintercept=0)) +
geom_hline(aes(yintercept=0)) +
geom_abline(slope=1, intercept = 0)+
scale_x_continuous(limits=c(-0.04, 0.04))+
scale_y_continuous(limits=c(-0.04, 0.04))+
scale_color_manual(values = c("#F08080", "#56B4E9","#32CD32"))+
theme_bw()+
theme(panel.spacing.x = unit(.5, "cm"),legend.position = "bottom",legend.title = element_text(size = 34),legend.text = element_text(size = 34),axis.title.y = element_text(size = 34),axis.title.x = element_text(size = 34),axis.text.x = element_text(size = 34,angle = 45,hjust = 1),axis.text.y = element_text(size = 34),strip.text.x = element_text(size = 28),strip.text.y = element_text(size = 28))+
labs(x="Effect size in BIOS",y="Effect size")
dev.off()
```
```{r}
# The overlap aDMCs between BIOS data and two external datasets.
# Females:33
Overlap_females<-Reduce(intersect, list(rownames(dat_DGLM_Xfemales_bacon_linear),rownames(df_aDMCs_females_Johansson_Blood),rownames(df_aDMCs_females_Reynolds_Mono)))
dat_aDMCs_females_validated<-dat_DGLM_Xfemales_bacon_linear[Overlap_females,]
# Males: 316
Overlap_males<-Reduce(intersect, list(rownames(dat_DGLM_Xmales_bacon_linear),rownames(df_aDMCs_males_Johansson_Blood),rownames(df_aDMCs_males_Reynolds_Mono)))
dat_aDMCs_males_validated<-dat_DGLM_Xmales_bacon_linear[Overlap_males,]
# Statistically significant aDMCs both in females and males.
both_sex<-intersect(rownames(dat_aDMCs_females_validated),rownames(dat_aDMCs_males_validated))
df_aDMCs_both_sex_validated<-dat_DGLM_Xfemales_bacon_linear[both_sex,]
# Statistically significant aDMCs only in females.
df_aDMCs_female_specific_validated<-subset(dat_aDMCs_females_validated,!rownames(dat_aDMCs_females_validated)%in% both_sex)
# Statistically significant aDMCs only in males.
df_aDMCs_male_specific_validated<-subset(dat_aDMCs_males_validated,!rownames(dat_aDMCs_males_validated)%in% both_sex)
save(df_aDMCs_both_sex_validated,df_aDMCs_female_specific_validated,df_aDMCs_male_specific_validated,dat_aDMCs_females_validated,dat_aDMCs_males_validated,file = "Output_05_Catalogue_aDMCs_validated.RData")
```