-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
430 lines (377 loc) · 19.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
import argparse
import collections
import json
import os
import random
import sys
import time
import numpy as np
import pandas as pd
import PIL
import torch
import torchvision
import torch.utils.data
from tensorboard_logger import Logger
import pickle
from pathlib import Path
from torch.utils.data import DataLoader
from dataset import datasets
import hparams_registry
from learning import algorithms, early_stopping, swad_utils
from utils import misc, eval_helper
from dataset.fast_dataloader import InfiniteDataLoader
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Shortcut Learning in Chest X-rays')
# training
parser.add_argument('--store_name', type=str, default='debug')
parser.add_argument('--dataset', type=str, default=["MIMIC"], nargs='+')
parser.add_argument('--task', type=str, default="No Finding", choices=datasets.TASKS + datasets.ATTRS)
parser.add_argument('--attr', type=str, default="sex", choices=datasets.ATTRS)
parser.add_argument('--group_def', type=str, default="group", choices=['group', 'label'])
parser.add_argument('--algorithm', type=str, default="ERM", choices=algorithms.ALGORITHMS)
# others
parser.add_argument('--output_dir', type=str, default='output')
parser.add_argument('--data_dir', type=str, default='data')
parser.add_argument('--hparams', type=str, help='JSON-serialized hparams dict')
parser.add_argument('--hparams_seed', type=int, default=0, help='Seed for random hparams (0 for "default hparams")')
parser.add_argument('--seed', type=int, default=0, help='Seed for everything else')
parser.add_argument('--steps', type=int, default=None)
parser.add_argument('--log_online', help='Log online using wandb', action='store_true')
parser.add_argument('--skip_ood_eval', help='skip evals on OOD datasets', action='store_true')
parser.add_argument('--log_all', help='Log all val metrics at each step to tb and wandb', action='store_true')
parser.add_argument('--stratified_erm_subset', type=int, default=None)
# two-stage related
parser.add_argument('--stage1_folder', type=str)
# early stopping
parser.add_argument('--use_es', action='store_true')
parser.add_argument('--es_strategy', choices=['metric'], default='metric')
parser.add_argument('--es_metric', type=str, default='min_group:accuracy')
parser.add_argument('--es_patience', type=int, default=5, help='Stop after this many checkpoints w/ no improvement')
# checkpoints
parser.add_argument('--resume', '-r', type=str, default='')
parser.add_argument('--checkpoint_freq', type=int, default=None, help='Checkpoint every N steps')
parser.add_argument('--skip_model_save', action='store_true')
parser.add_argument('--debug', action='store_true')
# architectures and pre-training sources
parser.add_argument('--image_arch', default='densenet_sup_in1k',
choices=['densenet_sup_in1k', 'resnet_sup_in1k', 'resnet_sup_in21k', 'resnet_simclr_in1k',
'resnet_barlow_in1k', 'vit_sup_in1k', 'vit_sup_in21k', 'vit_sup_swag', 'vit_clip_oai',
'vit_clip_laion', 'vit_dino_in1k', 'resnet_dino_in1k'])
# data augmentations
parser.add_argument('--aug', default='basic2',
choices=['none', 'basic', 'basic2', 'auto_aug', 'rand_aug', 'trivial_aug', 'augmix'])
args = parser.parse_args()
start_step = 0
misc.prepare_folders(args)
output_dir = os.path.join(args.output_dir, args.store_name)
if not args.debug:
sys.stdout = misc.Tee(os.path.join(output_dir, 'out.txt'))
sys.stderr = misc.Tee(os.path.join(output_dir, 'err.txt'))
tb_logger = Logger(logdir=output_dir, flush_secs=2)
print("Environment:")
print("\tPython: {}".format(sys.version.split(" ")[0]))
print("\tPyTorch: {}".format(torch.__version__))
print("\tTorchvision: {}".format(torchvision.__version__))
print("\tCUDA: {}".format(torch.version.cuda))
print("\tCUDNN: {}".format(torch.backends.cudnn.version()))
print("\tNumPy: {}".format(np.__version__))
print("\tPIL: {}".format(PIL.__version__))
print('Args:')
for k, v in sorted(vars(args).items()):
print('\t{}: {}'.format(k, v))
if args.hparams_seed == 0:
hparams = hparams_registry.default_hparams(args.algorithm, args.dataset)
else:
hparams = hparams_registry.random_hparams(args.algorithm, args.dataset, misc.seed_hash(args.hparams_seed))
if args.hparams:
hparams.update(json.loads(args.hparams))
hparams.update({
'image_arch': args.image_arch,
'data_augmentation': args.aug,
'task': args.task,
'attr': args.attr,
'group_def': args.group_def
})
if args.log_online:
import wandb
import hashlib
wandb.init(project='subpop_fairness', config={**vars(args), **hparams},
name=f"train_{args.dataset}_{args.task}_{args.algorithm}_{args.attr}_"
f"{hashlib.md5(str({**vars(args), **hparams}).encode('utf-8')).hexdigest()[:8]}_"
f"{os.environ['SLURM_JOB_ID'] if 'SLURM_JOB_ID' in os.environ else ''}")
print('HParams:')
for k, v in sorted(hparams.items()):
print('\t{}: {}'.format(k, v))
with open(os.path.join(output_dir, 'args.json'), 'w') as f:
json.dump(vars(args), f, indent=4)
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
os.environ["TOKENIZERS_PARALLELISM"] = "false"
torch.multiprocessing.set_sharing_strategy('file_system')
device = "cuda" if torch.cuda.is_available() else "cpu"
def make_combined_dataset(names, sset, group_def, override_attr=None):
ind_datasets = []
for ds in names:
ind_datasets.append(vars(datasets)[ds](args.data_dir, sset, hparams, group_def=group_def, override_attr=override_attr))
return datasets.ConcatImageDataset(ind_datasets)
if len(args.dataset) == 1:
if args.dataset[0] in vars(datasets):
train_dataset = vars(datasets)[args.dataset[0]](args.data_dir, 'tr', hparams, group_def=args.group_def)
val_dataset = vars(datasets)[args.dataset[0]](args.data_dir, 'va', hparams, group_def='group')
test_dataset = vars(datasets)[args.dataset[0]](args.data_dir, 'te', hparams, group_def='group')
else:
raise NotImplementedError
else:
train_dataset = make_combined_dataset(args.dataset, 'tr', args.group_def)
val_dataset = make_combined_dataset(args.dataset, 'va', 'group')
test_dataset = make_combined_dataset(args.dataset, 'te', 'group')
if args.algorithm == 'DFR':
train_datasets = []
for ds in args.dataset:
train_datasets.append(vars(datasets)[ds](
args.data_dir, 'va', hparams, group_def=args.group_def, subsample_type='group'))
train_dataset = datasets.ConcatImageDataset(train_datasets)
elif args.algorithm == 'StratifiedERM':
assert args.stratified_erm_subset is not None
train_dataset = datasets.SubsetImageDataset(
train_dataset, idxs=np.argwhere(np.array(train_dataset.a) == args.stratified_erm_subset).squeeze())
val_dataset = datasets.SubsetImageDataset(
val_dataset, idxs=np.argwhere(np.array(val_dataset.a) == args.stratified_erm_subset).squeeze())
test_dataset = datasets.SubsetImageDataset(
test_dataset, idxs=np.argwhere(np.array(test_dataset.a) == args.stratified_erm_subset).squeeze())
num_workers = train_dataset.N_WORKERS
input_shape = train_dataset.INPUT_SHAPE
num_labels = train_dataset.num_labels
num_attributes = train_dataset.num_attributes
data_type = train_dataset.data_type
n_steps = args.steps or train_dataset.N_STEPS
checkpoint_freq = args.checkpoint_freq or train_dataset.CHECKPOINT_FREQ
hparams.update({
"steps": n_steps
})
print(f"Dataset:\n\t[train]\t{len(train_dataset)}"
f"\n\t[val]\t{len(val_dataset)}")
if hparams['group_balanced']:
# if attribute not available, groups degenerate to classes
train_weights = np.asarray(train_dataset.weights_g)
train_weights /= np.sum(train_weights)
elif hparams['attr_balanced']:
train_weights = np.asarray(train_dataset.weights_a)
train_weights /= np.sum(train_weights)
else:
train_weights = None
train_loader = InfiniteDataLoader(
dataset=train_dataset,
weights=train_weights,
batch_size=min(len(train_dataset), hparams['batch_size']),
num_workers=num_workers
)
split_names = ['va', 'te']
eval_loaders = [DataLoader(
dataset=dset,
batch_size=max(128, hparams['batch_size'] * 2),
num_workers=num_workers,
shuffle=False)
for dset in [val_dataset, test_dataset]
]
algorithm_class = algorithms.get_algorithm_class(args.algorithm)
algorithm = algorithm_class(data_type, input_shape, num_labels, num_attributes, len(train_dataset), hparams,
grp_sizes=train_dataset.group_sizes, attr_sizes=train_dataset.attr_sizes)
es_group = args.es_metric.split(':')[0]
es_metric = args.es_metric.split(':')[1]
es = early_stopping.EarlyStopping(
patience=args.es_patience, lower_is_better=early_stopping.lower_is_better[es_metric])
best_model_path = os.path.join(output_dir, 'model.best.pkl')
# load stage1 model if using 2-stage algorithm
if 'CRT' in args.algorithm or 'DFR' in args.algorithm:
assert os.path.isdir(args.stage1_folder)
if (Path(args.stage1_folder)/'model.best.pkl').is_file():
weight_location = Path(args.stage1_folder)/'model.best.pkl'
else:
weight_location = Path(args.stage1_folder)/'model.pkl'
checkpoint = torch.load(weight_location, map_location="cpu")
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in checkpoint['model_dict'].items():
if 'classifier' not in k and 'network.1.' not in k:
new_state_dict[k] = v
algorithm.load_state_dict(new_state_dict, strict=False)
print(f"===> Pretrained weights found in total: [{len(list(new_state_dict.keys()))}]")
print(f"===> Pre-trained model loaded: '{weight_location}'")
if args.resume:
if os.path.isfile(args.resume):
print(f"===> Loading checkpoint '{args.resume}'")
checkpoint = torch.load(args.resume)
start_step = checkpoint['start_step']
args.best_val_acc = checkpoint['best_val_acc']
algorithm.load_state_dict(checkpoint['model_dict'])
es = checkpoint['early_stopper']
print(f"===> Loaded checkpoint '{args.resume}' (step [{start_step}])")
else:
print(f"===> No checkpoint found at '{args.resume}'")
algorithm.to(device)
train_minibatches_iterator = iter(train_loader)
checkpoint_vals = collections.defaultdict(lambda: [])
steps_per_epoch = len(train_dataset) / hparams['batch_size']
def save_checkpoint(save_dict, filename='model.pkl'):
if args.skip_model_save:
return
filename = os.path.join(output_dir, filename)
torch.save(save_dict, filename)
def log_value(key, val, s):
tb_logger.log_value(key, val, s)
if args.log_online:
wandb.log({key: val}, step=s)
last_results_keys = None
for step in range(start_step, n_steps):
if args.use_es and es.early_stop:
print(f"Early stopping at step {step} with best {args.es_metric}={es.best_score}.")
break
step_start_time = time.time()
i, x, y, a = next(train_minibatches_iterator)
minibatch_device = (i, x.to(device), y.to(device), a.to(device))
algorithm.train()
step_vals = algorithm.update(minibatch_device, step)
checkpoint_vals['step_time'].append(time.time() - step_start_time)
for key, val in step_vals.items():
checkpoint_vals[key].append(val)
if ((not args.debug) and step % checkpoint_freq == 0) or (step == n_steps - 1):
results = {
'step': step,
'epoch': step / steps_per_epoch,
}
for key, val in checkpoint_vals.items():
results[key] = np.mean(val)
curr_metrics = {split: eval_helper.eval_metrics(algorithm, loader, device)
for split, loader in zip(split_names, eval_loaders)}
full_val_metrics = curr_metrics['va']
for split in sorted(split_names):
results[f'{split}_avg_acc'] = curr_metrics[split]['overall']['accuracy_50']
results[f'{split}_overall_auroc'] = curr_metrics[split]['overall']['AUROC']
results[f'{split}_worst_acc'] = curr_metrics[split]['min_group']['accuracy_50']
results_keys = list(results.keys())
if results_keys != last_results_keys:
print("\n")
misc.print_row([key for key in results_keys if key not in {'mem_gb', 'step_time'}], colwidth=12)
last_results_keys = results_keys
misc.print_row([results[key] for key in results_keys if key not in {'mem_gb', 'step_time'}], colwidth=12)
results['mem_gb'] = torch.cuda.max_memory_allocated() / (1024.*1024.*1024.)
results.update({
'hparams': hparams,
'args': vars(args),
})
results.update(curr_metrics)
epochs_path = os.path.join(output_dir, 'results.json')
with open(epochs_path, 'a') as f:
f.write(json.dumps(results, sort_keys=True, cls=misc.NumpyEncoder) + "\n")
save_dict = {
"args": vars(args),
"best_es_metric": es.best_score,
"start_step": step + 1,
"num_labels": num_labels,
"num_attributes": train_dataset.num_attributes,
"model_input_shape": input_shape,
"model_hparams": hparams,
"model_dict": algorithm.state_dict(),
"early_stopper": es,
}
save_checkpoint(save_dict)
# logging
for key in checkpoint_vals.keys() - {'step_time'}:
log_value(key, results[key], step)
for key in split_names:
log_value(f"{key}/avg_acc", results[f"{key}_avg_acc"], step)
log_value(f"{key}/worst_acc", results[f"{key}_worst_acc"], step)
if args.log_all:
for key1 in full_val_metrics:
for key2 in full_val_metrics[key1]:
if isinstance(full_val_metrics[key1][key2], dict):
for key3 in full_val_metrics[key1][key2]:
log_value(f"va/{key1}_{key2}_{key3}", full_val_metrics[key1][key2][key3], step)
else:
log_value(f"va/{key1}_{key2}", full_val_metrics[key1][key2], step)
if hasattr(algorithm, 'optimizer'):
log_value('learning_rate', algorithm.optimizer.param_groups[0]['lr'], step)
if args.use_es:
if args.es_strategy == 'metric':
es_metric_val = full_val_metrics[es_group][es_metric]
es(es_metric_val, step, save_dict, best_model_path)
log_value('es_metric', es_metric_val, step)
checkpoint_vals = collections.defaultdict(lambda: [])
# load best model and get metrics on eval sets
if args.use_es and not args.skip_model_save:
algorithm.load_state_dict(torch.load(os.path.join(output_dir, "model.best.pkl"))['model_dict'])
algorithm.eval()
# evaluate stratified ERM on all samples
if args.algorithm == 'StratifiedERM':
val_dataset = val_dataset.orig_ds
test_dataset = test_dataset.orig_ds
split_names = ['va', 'te']
final_eval_loaders = [DataLoader(
dataset=dset,
batch_size=max(128, hparams['batch_size'] * 2),
num_workers=num_workers,
shuffle=False)
for dset in [val_dataset, test_dataset]
]
if (not args.skip_ood_eval) and (args.dataset[0] in datasets.CXR_DATASETS):
# all CXR datasets with matching tasks
all_cxr = []
for ds in datasets.CXR_DATASETS:
if args.task in vars(datasets)[ds].TASKS:
all_cxr.append(ds)
split_names_ds = vars(datasets)[ds].EVAL_SPLITS
for attr in vars(datasets)[ds].AVAILABLE_ATTRS:
final_eval_loaders += [DataLoader(
dataset=dset,
batch_size=max(128, hparams['batch_size'] * 2),
num_workers=num_workers,
shuffle=False)
for dset in [vars(datasets)[ds](args.data_dir, split, hparams, override_attr=attr)
for split in split_names_ds]
]
for j in split_names_ds:
split_names.append(f'{ds}-{attr}-{j}')
# add compound eval sets
all_ood = [i for i in all_cxr if i not in args.dataset]
print(f"All OOD sets: {str(all_ood)}")
print(f"All CXR sets: {str(all_cxr)}")
for combined_set_name, combined_set in zip(['all_ood', 'all_cxr'], [all_ood, all_cxr]):
for attr in ['sex', 'age']:
split_names.append(f'{combined_set_name}-{attr}-te')
eval_ds = make_combined_dataset(combined_set, 'te', 'group', override_attr=attr)
final_eval_loaders += [DataLoader(
dataset=eval_ds,
batch_size=max(128, hparams['batch_size'] * 2),
num_workers=num_workers,
shuffle=False)
]
final_results = {split: eval_helper.eval_metrics(algorithm, loader, device, add_arrays=True)
for split, loader in zip(split_names, final_eval_loaders)}
if args.use_es:
final_results['es_step'] = es.step
pickle.dump(final_results, open(os.path.join(output_dir, 'final_results.pkl'), 'wb'))
print("\nTest accuracy (best validation checkpoint):")
print(f"\tmean:\t[{final_results['te']['overall']['accuracy_50']:.3f}]\n"
f"\tworst:\t[{final_results['te']['min_group']['accuracy_50']:.3f}]")
if args.log_online:
for split in final_results:
for key1 in final_results[split]:
if isinstance(final_results[split][key1], dict):
for key2 in final_results[split][key1]:
if isinstance(final_results[split][key1][key2], dict):
pass
else:
wandb.log({f"{split}/best_{key1}_{key2}": final_results[split][key1][key2]})
print("Group-wise accuracy:")
for split in final_results.keys():
if split != 'es_step' and not split.startswith('lin_'):
print('\t[{}] group-wise {}'.format(
split, (np.array2string(
pd.DataFrame(final_results[split]['per_group']).T['accuracy_50'].values,
separator=', ', formatter={'float_kind': lambda x: "%.3f" % x}))))
with open(os.path.join(output_dir, 'done'), 'w') as f:
f.write('done')