-
Notifications
You must be signed in to change notification settings - Fork 1
/
hatrpo.py
423 lines (384 loc) · 20.6 KB
/
hatrpo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
import argparse
import os
import random
import time
from distutils.util import strtobool
import sys
sys.path.append('highway_envs')
import highway_env
highway_env.register_highway_envs()
from highway_env.envs.common.agents import FollowingVictimVulnerable
import gymnasium as gym
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.distributions.categorical import Categorical
from torch.utils.tensorboard import SummaryWriter
from gym_wrapper import MultiAgentAutoResetWrapper
from util import *
n_attackers = 4
EPS = 1e-8
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--exp-name", type=str, default=os.path.basename(__file__).rstrip(".py"),
help="the name of this experiment")
parser.add_argument("--env-name", type=str, default="highway-perfect-target-fast-v0",
help="the name of this experiment")
parser.add_argument("--learning-rate", type=float, default=2.5e-4,
help="the learning rate of the optimizer")
parser.add_argument("--seed", type=int, default=5,
help="seed of the experiment")
parser.add_argument("--total-timesteps", type=int, default=200000,
help="total timesteps of the experiments")
parser.add_argument("--torch-deterministic", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="if toggled, `torch.backends.cudnn.deterministic=False`")
parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="if toggled, cuda will be enabled by default")
parser.add_argument("--num-envs", type=int, default=1,
help="the number of parallel game environments")
parser.add_argument("--num-steps", type=int, default=1000,
help="the number of steps to run in each environment per policy rollout")
parser.add_argument("--anneal-lr", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="Toggle learning rate annealing for policy and value networks")
parser.add_argument("--gae", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="Use GAE for advantage computation")
parser.add_argument("--gamma", type=float, default=0.99,
help="the discount factor gamma")
parser.add_argument("--gae-lambda", type=float, default=0.95,
help="the lambda for the general advantage estimation")
parser.add_argument("--num-minibatches", type=int, default=4,
help="the number of mini-batches")
parser.add_argument("--update-epochs", type=int, default=4,
help="the K epochs to update the policy")
parser.add_argument("--norm-adv", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="Toggles advantages normalization")
parser.add_argument("--clip-coef", type=float, default=0.2,
help="the surrogate clipping coefficient")
parser.add_argument("--clip-vloss", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="Toggles whether or not to use a clipped loss for the value function, as per the paper.")
parser.add_argument("--ent-coef", type=float, default=0.01,
help="coefficient of the entropy")
parser.add_argument("--vf-coef", type=float, default=0.5,
help="coefficient of the value function")
parser.add_argument("--cvf-coef", type=float, default=0.5,
help="coefficient of the cost value function")
parser.add_argument("--max-grad-norm", type=float, default=0.5,
help="the maximum norm for the gradient clipping")
parser.add_argument("--target-kl", type=float, default=None,
help="the target KL divergence threshold")
parser.add_argument("--damping", type=float, default=1e-1,
help="the damping value for fisher vector product")
parser.add_argument("--max-kl", type=float, default=0.05,
help="the trust region for KL divergence")
parser.add_argument("--max-constraint", type=float, default=0.1,
help="the maximum constraint (d_k)")
parser.add_argument("--constraint-annealing-factor", type=float, default=1e-6,
help="the annealing factor of constraint")
parser.add_argument("--line-search-fraction", type=float, default=0.5,
help="line search fraction")
parser.add_argument("--value-update-epochs", type=int, default=10,
help="the number of epochs to update the value functions")
parser.add_argument("--fraction-coef", type=float, default=0.5,
help="the fraction coefficient")
parser.add_argument("--ls-step", type=int, default=10,
help="maximum number of line search steps")
args = parser.parse_args()
args.batch_size = int(args.num_envs * args.num_steps)
args.minibatch_size = int(args.batch_size // args.num_minibatches)
return args
def config_env():
env = gym.make(args.env_name, render_mode="rgb_array")
env.configure({"observation": {
"type": "MultiAgentObservation",
"observation_config": {
"type": "AttackerKinematics",
"see_behind": True,
"vehicles_count": n_attackers+1
}
},
"attacker_num": n_attackers,
"controlled_vehicles": n_attackers,
"time_penalty": -0.1/n_attackers,
"time_penalty": 0.0,
"attacker_collide_each_other_reward": -2.5,
"vicitm_collision_reward": 10.0/n_attackers,
"randomize_starting_position": False,
"constraint_env": False,
"vis": False,
"testing": False,
"victim_lane_id": 1})
env.reset()
victim_agent = FollowingVictimVulnerable(env)
env.load_agents(n_attackers, victim_agent)
env = MultiAgentAutoResetWrapper(env)
return env
def layer_init(layer, std=np.sqrt(2), bias_const=0.0):
torch.nn.init.orthogonal_(layer.weight, std)
torch.nn.init.constant_(layer.bias, bias_const)
return layer
class AttackerAgent(nn.Module):
def __init__(self, envs, num_agents, hidden_dim):
super(AttackerAgent, self).__init__()
# print(envs.action_space)
self.critic = nn.Sequential(
layer_init(nn.Linear((n_attackers+1)*5, hidden_dim)),
nn.Tanh(),
layer_init(nn.Linear(hidden_dim, hidden_dim)),
nn.Tanh(),
layer_init(nn.Linear(hidden_dim, 1), std=1.0),
)
self.actor = nn.Sequential(
layer_init(nn.Linear((n_attackers+1)*5, hidden_dim)),
nn.Tanh(),
layer_init(nn.Linear(hidden_dim, hidden_dim)),
nn.Tanh(),
layer_init(nn.Linear(hidden_dim, 5), std=0.01),
)
def get_value(self, x):
x = x.flatten(start_dim=-2)
return self.critic(x)
def get_action_and_value(self, x, centralized_x, action=None):
x = x.flatten(start_dim=-2)
centralized_x = centralized_x.flatten(start_dim=-2)
logits = self.actor(x)
dist = Categorical(logits=logits)
if action is None:
action = dist.sample()
return action, dist.log_prob(action), dist.entropy(), self.critic(centralized_x), logits
def get_action_info(self, x, action=None):
x = x.flatten(start_dim=-2)
logits = self.actor(x)
dist = Categorical(logits=logits)
if action is None:
action = dist.sample()
return action, dist.log_prob(action), dist.entropy()
def get_kl(self, x, b_logits):
x = x.flatten(start_dim=-2)
logits = self.actor(x)
probs = torch.nn.functional.softmax(logits, dim=-1)
b_probs = torch.nn.functional.softmax(b_logits, dim=-1)
kl = categorical_kl(probs, b_probs).mean()
return kl
if __name__ == "__main__":
args = parse_args()
PATHS = []
folder_path = "saved_models/matrpo_newer_target_seed_" + str(args.seed) + "_" + str(n_attackers)
if not os.path.exists(folder_path):
os.makedirs(folder_path)
for i in range(n_attackers):
PATHS.append(folder_path +"/agent" + str(i) + ".pt")
env_name = "highway_custom_matrpo_newer_target_" + str(n_attackers)
run_name = f"{env_name}__{args.exp_name}__{args.seed}__{int(time.time())}"
writer = SummaryWriter(f"runs/matrpo/{run_name}")
writer.add_text(
"hyperparameters",
"|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
)
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = args.torch_deterministic
device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu")
envs = config_env()
agents = []
critic_optimizers = []
for i in range(n_attackers):
agents.append(AttackerAgent(envs, n_attackers, 128).to(device))
critic_optimizers.append(optim.Adam(agents[i].critic.parameters(), lr=args.learning_rate, eps=1e-5))
obs = torch.zeros((n_attackers, args.num_steps, args.num_envs) + (n_attackers+1,5)).to(device)
centralized_obs = torch.zeros((args.num_steps, args.num_envs) + (n_attackers+1,5)).to(device)
actions = torch.zeros((n_attackers, args.num_steps, args.num_envs) + ()).to(device)
logprobs = torch.zeros((n_attackers, args.num_steps, args.num_envs)).to(device)
rewards = torch.zeros((n_attackers, args.num_steps, args.num_envs)).to(device)
dones = torch.zeros((n_attackers, args.num_steps, args.num_envs)).to(device)
values = torch.zeros((n_attackers, args.num_steps, args.num_envs)).to(device)
saved_logits = torch.zeros((n_attackers, args.num_steps, args.num_envs) + (5, )).to(device)
global_step = 0
start_time = time.time()
next_obs = torch.Tensor(envs.reset()[0]).to(device)
next_done = torch.zeros(n_attackers).to(device)
num_updates = args.total_timesteps // args.batch_size
'''
collect samples
'''
for update in range(1, num_updates + 1):
if args.anneal_lr:
frac = 1.0 - (update - 1.0) / num_updates
lrnow = frac * args.learning_rate
for a in range(n_attackers):
critic_optimizers[a].param_groups[0]["lr"] = lrnow
for step in range(0, args.num_steps):
global_step += 1 * args.num_envs
actions_to_take = [0 for _ in range(n_attackers)]
centralized_obs[step] = next_obs[0]
for i in range(n_attackers):
obs[i, step] = next_obs[i]
dones[i, step] = next_done[i]
with torch.no_grad():
action, logprob, _, value, logits_ = agents[i].get_action_and_value(next_obs[i], centralized_obs[step])
values[i, step] = value.flatten()
saved_logits[i, step] = logits_
actions[i, step] = action
# print("action: {}".format(action))
logprobs[i, step] = logprob
actions_to_take[i] = action.item()
next_obs, reward, done, truncated, info = envs.step(tuple(actions_to_take))
for i in range(n_attackers):
print("reward: {}".format(reward))
rewards[i, step] = torch.tensor(reward[i]).to(device).view(-1)
next_obs, next_done = torch.Tensor(next_obs).to(device), torch.Tensor(done).to(device)
if 'final_info' in info.keys():
item = info['final_info']
print(f"global_step={global_step}, episodic_return={item['episode']['r']}")
writer.add_scalar("charts/episodic_return", item["episode"]["r"], global_step)
writer.add_scalar("charts/episodic_length", item["episode"]["l"], global_step)
'''
estimate advantages
'''
with torch.no_grad():
next_values = []
for i in range(n_attackers):
next_values.append(agents[i].get_value(next_obs[0]))
if args.gae:
# estimate advantages
advantages = torch.zeros_like(rewards).to(device)
for i in range(n_attackers):
lastgaelam = 0
for t in reversed(range(args.num_steps)):
if t == args.num_steps - 1:
nextnonterminal = 1.0 - next_done[i]
nextvalues = next_values[i]
else:
nextnonterminal = 1.0 - dones[i, t + 1]
nextvalues = values[i, t + 1]
delta = rewards[:, t].mean() + args.gamma * nextvalues * nextnonterminal - values[i, t]
advantages[i, t] = lastgaelam = delta + args.gamma * args.gae_lambda * nextnonterminal * lastgaelam
'''
# use a centralized dones to calculate advantages
advantages = torch.zeros((args.num_steps, args.num_envs)).to(device)
lastgaelam = 0
for t in reversed(range(args.num_steps)):
if t == args.num_steps - 1:
nextnonterminal = any(1.0 - next_done)
nextvalues = next_value
else:
nextnonterminal = any(1.0 - dones[:, t + 1])
nextvalues = values[t + 1]
# print("value of different agents: ", values[:, t])
delta = rewards[:, t].mean() + args.gamma * nextvalues * nextnonterminal - values[t]
# print("*********")
# print(delta)
# print(advantages.shape)
advantages[t] = lastgaelam = delta + args.gamma * args.gae_lambda * nextnonterminal * lastgaelam
'''
returns = advantages + values
b_obs = obs.squeeze()
b_centralized_obs = centralized_obs.squeeze()
b_logprobs = logprobs.squeeze()
b_actions = actions.squeeze()
b_advantages = advantages.squeeze()
b_returns = returns.squeeze()
b_values = values.squeeze()
b_logits = saved_logits.squeeze()
b_inds = np.arange(args.batch_size)
for epoch in range(args.update_epochs):
np.random.shuffle(b_inds)
for start in range(0, args.batch_size, args.minibatch_size):
end = start + args.minibatch_size
mb_inds = b_inds[start:end]
M = torch.ones_like(b_actions.long()[i, mb_inds]).to(device)
for i in np.random.permutation(n_attackers):
mb_advantages = b_advantages[i, mb_inds]
if args.norm_adv:
mb_advantages = (mb_advantages - mb_advantages.mean()) / (mb_advantages.std() + 1e-8)
_, old_logprobs_M, *_ = agents[i].get_action_info(b_obs[i, mb_inds], b_actions.long()[i, mb_inds])
def get_loss(volatile=False):
with torch.set_grad_enabled(not volatile):
_, newlogprob, *_ = agents[i].get_action_info(b_obs[i, mb_inds], b_actions.long()[i, mb_inds])
action_loss = -mb_advantages * torch.exp(newlogprob - b_logprobs[i, mb_inds])*M
return action_loss.mean()
def fisher_vector_product(y):
kl = agents[i].get_kl(b_obs[i, mb_inds], b_logits[i, mb_inds])
grads = torch.autograd.grad(kl, agents[i].actor.parameters(), create_graph=True)
flat_grads = torch.cat([g.view(-1) for g in grads])
inner_prod = flat_grads.t() @ y # different results due to numerical precision and
# exploiting GPU parallelism by reduction in operations
grads = torch.autograd.grad(inner_prod, agents[i].actor.parameters())
flat_grads = torch.cat([g.reshape(-1) for g in grads]).data
return flat_grads + y * args.damping
loss = get_loss()
grads = torch.autograd.grad(loss, agents[i].actor.parameters())
loss_grad = torch.cat([grad.view(-1) for grad in grads]).detach() #g
grad_norm = False # TODO: shall we set this to True?
if grad_norm == True:
loss_grad = loss_grad/torch.norm(loss_grad)
stepdir = cg(fisher_vector_product, -loss_grad, 10) #(H^-1)*g
if grad_norm == True:
stepdir = stepdir/torch.norm(stepdir)
q = (stepdir * fisher_vector_product(stepdir)).sum() #g^T.H^-1.g
lam = torch.sqrt((q / (2 * args.max_kl)))
x = (1. / (lam + EPS)) * stepdir
fraction = args.line_search_fraction
# line search
prev_params = get_flat_params_from(agents[i].actor)
prev_loss = loss.clone().detach()
expected_improve = -torch.dot(x, loss_grad)
expected_improve = expected_improve.clone().detach()
flag = False
fraction_coef = args.fraction_coef
for l in range(args.ls_step):
x_norm = torch.norm(x)
if x_norm > 0.5:
x = x * 0.5 / x_norm
new_params = prev_params + fraction_coef * (fraction**l) * x # TODO: should this be + or -?
set_flat_params_to(new_params, agents[i].actor)
try:
new_loss = get_loss(True)
except:
print("network exploded!!!!!!!!!!!!!!!")
break
kl = agents[i].get_kl(b_obs[i, mb_inds], b_logits[i, mb_inds])
print("objective improvement: ", new_loss- prev_loss)
# see https: // en.wikipedia.org / wiki / Backtracking_line_search
if ((kl <= args.max_kl) and (new_loss < prev_loss) and torch.isfinite(new_loss)):
flag = True
print("^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^")
print("line search successful")
break
expected_improve *= fraction
if not flag:
# line search failed
print("line search failed")
set_flat_params_to(prev_params, agents[i].actor)
_, new_logprobs_M, *_ = agents[i].get_action_info(b_obs[i, mb_inds], b_actions.long()[i, mb_inds])
M = M * torch.exp(new_logprobs_M - old_logprobs_M).detach()
for _ in range(args.value_update_epochs):
# Value loss
newvalue = agents[i].get_value(b_centralized_obs[mb_inds]).view(-1)
if args.clip_vloss:
v_loss_unclipped = (newvalue - b_returns[i, mb_inds]) ** 2
v_clipped = b_values[i, mb_inds] + torch.clamp(
newvalue - b_values[i, mb_inds],
-args.clip_coef,
args.clip_coef,
)
v_loss_clipped = (v_clipped - b_returns[i, mb_inds]) ** 2
v_loss_max = torch.max(v_loss_unclipped, v_loss_clipped)
v_loss = 0.5 * v_loss_max.mean()
else:
v_loss = 0.5 * ((newvalue - b_returns[mb_inds]) ** 2).mean()
critic_optimizers[i].zero_grad()
(v_loss * args.vf_coef).backward()
nn.utils.clip_grad_norm_(agents[i].critic.parameters(), args.max_grad_norm)
critic_optimizers[i].step()
writer.add_scalar("charts/learning_rate", critic_optimizers[i].param_groups[0]["lr"], global_step)
writer.add_scalar("losses/value_loss", v_loss.item(), global_step)
writer.add_scalar("losses/policy_loss", loss.item(), global_step)
print("SPS:", int(global_step / (time.time() - start_time)))
writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step)
for i in range(n_attackers):
torch.save(agents[i], PATHS[i])
envs.close()
writer.close()