-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathParamGeneration.cpp
654 lines (550 loc) · 25.2 KB
/
ParamGeneration.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
/// \file ParamGeneration.cpp
///
/// \brief Parameter manipulation routines for the Zerocoin cryptographic
/// components.
///
/// \author Ian Miers, Christina Garman and Matthew Green
/// \date June 2013
///
/// \copyright Copyright 2013 Ian Miers, Christina Garman and Matthew Green
/// \license This project is released under the MIT license.
#include <string>
#include "Zerocoin.h"
using namespace std;
namespace libzerocoin {
/// \brief Fill in a set of Zerocoin parameters from a modulus "N".
/// \param N A trusted RSA modulus
/// \param aux An optional auxiliary string used in derivation
/// \param securityLevel A security level
///
/// \throws ZerocoinException if the process fails
///
/// Fills in a ZC_Params data structure deterministically from
/// a trustworthy RSA modulus "N", which is provided as a Bignum.
///
/// Note: this routine makes the fundamental assumption that "N"
/// encodes a valid RSA-style modulus of the form "e1*e2" for some
/// unknown safe primes "e1" and "e2". These factors must not
/// be known to any party, or the security of Zerocoin is
/// compromised. The integer "N" must be a MINIMUM of 1023
/// in length, and 3072 bits is strongly recommended.
///
void
CalculateParams(Params ¶ms, Bignum N, string aux, uint32_t securityLevel)
{
params.initialized = false;
params.accumulatorParams.initialized = false;
// Verify that |N| is > 1023 bits.
uint32_t NLen = N.bitSize();
if (NLen < 1023) {
throw ZerocoinException("Modulus must be at least 1023 bits");
}
// Verify that "securityLevel" is at least 80 bits (minimum).
if (securityLevel < 80) {
throw ZerocoinException("Security level must be at least 80 bits.");
}
// Set the accumulator modulus to "N".
params.accumulatorParams.accumulatorModulus = N;
// Calculate the required size of the field "F_p" into which
// we're embedding the coin commitment group. This may throw an
// exception if the securityLevel is too large to be supported
// by the current modulus.
uint32_t pLen = 0;
uint32_t qLen = 0;
calculateGroupParamLengths(NLen - 2, securityLevel, &pLen, &qLen);
// Calculate candidate parameters ("p", "q") for the coin commitment group
// using a deterministic process based on "N", the "aux" string, and
// the dedicated string "COMMITMENTGROUP".
params.coinCommitmentGroup = deriveIntegerGroupParams(calculateSeed(N, aux, securityLevel, STRING_COMMIT_GROUP),
pLen, qLen);
// Next, we derive parameters for a second Accumulated Value commitment group.
// This is a Schnorr group with the specific property that the order of the group
// must be exactly equal to "q" from the commitment group. We set
// the modulus of the new group equal to "2q+1" and test to see if this is prime.
params.serialNumberSoKCommitmentGroup = deriveIntegerGroupFromOrder(params.coinCommitmentGroup.modulus);
// Calculate the parameters for the internal commitment
// using the same process.
params.accumulatorParams.accumulatorPoKCommitmentGroup = deriveIntegerGroupParams(calculateSeed(N, aux, securityLevel, STRING_AIC_GROUP),
qLen + 300, qLen + 1);
// Calculate the parameters for the accumulator QRN commitment generators. This isn't really
// a whole group, just a pair of random generators in QR_N.
uint32_t resultCtr;
params.accumulatorParams.accumulatorQRNCommitmentGroup.g = generateIntegerFromSeed(NLen - 1,
calculateSeed(N, aux, securityLevel, STRING_QRNCOMMIT_GROUPG),
&resultCtr).pow_mod(Bignum(2), N);
params.accumulatorParams.accumulatorQRNCommitmentGroup.h = generateIntegerFromSeed(NLen - 1,
calculateSeed(N, aux, securityLevel, STRING_QRNCOMMIT_GROUPH),
&resultCtr).pow_mod(Bignum(2), N);
// Calculate the accumulator base, which we calculate as "u = C**2 mod N"
// where C is an arbitrary value. In the unlikely case that "u = 1" we increment
// "C" and repeat.
Bignum constant(ACCUMULATOR_BASE_CONSTANT);
params.accumulatorParams.accumulatorBase = Bignum(1);
for (uint32_t count = 0; count < MAX_ACCUMGEN_ATTEMPTS && params.accumulatorParams.accumulatorBase.isOne(); count++) {
params.accumulatorParams.accumulatorBase = constant.pow_mod(Bignum(2), params.accumulatorParams.accumulatorModulus);
}
// Compute the accumulator range. The upper range is the largest possible coin commitment value.
// The lower range is sqrt(upper range) + 1. Since OpenSSL doesn't have
// a square root function we use a slightly higher approximation.
params.accumulatorParams.maxCoinValue = params.coinCommitmentGroup.modulus;
params.accumulatorParams.minCoinValue = Bignum(2).pow((params.coinCommitmentGroup.modulus.bitSize() / 2) + 3);
// If all went well, mark params as successfully initialized.
params.accumulatorParams.initialized = true;
// If all went well, mark params as successfully initialized.
params.initialized = true;
}
/// \brief Format a seed string by hashing several values.
/// \param N A Bignum
/// \param aux An auxiliary string
/// \param securityLevel The security level in bits
/// \param groupName A group description string
/// \throws ZerocoinException if the process fails
///
/// Returns the hash of the value.
uint256
calculateGeneratorSeed(uint256 seed, uint256 pSeed, uint256 qSeed, string label, uint32_t index, uint32_t count)
{
CHashWriter hasher(0,0);
uint256 hash;
// Compute the hash of:
// <modulus>||<securitylevel>||<auxString>||groupName
hasher << seed;
hasher << string("||");
hasher << pSeed;
hasher << string("||");
hasher << qSeed;
hasher << string("||");
hasher << label;
hasher << string("||");
hasher << index;
hasher << string("||");
hasher << count;
return hasher.GetHash();
}
/// \brief Format a seed string by hashing several values.
/// \param N A Bignum
/// \param aux An auxiliary string
/// \param securityLevel The security level in bits
/// \param groupName A group description string
/// \throws ZerocoinException if the process fails
///
/// Returns the hash of the value.
uint256
calculateSeed(Bignum modulus, string auxString, uint32_t securityLevel, string groupName)
{
CHashWriter hasher(0,0);
uint256 hash;
// Compute the hash of:
// <modulus>||<securitylevel>||<auxString>||groupName
hasher << modulus;
hasher << string("||");
hasher << securityLevel;
hasher << string("||");
hasher << auxString;
hasher << string("||");
hasher << groupName;
return hasher.GetHash();
}
uint256
calculateHash(uint256 input)
{
CHashWriter hasher(0,0);
// Compute the hash of "input"
hasher << input;
return hasher.GetHash();
}
/// \brief Calculate field/group parameter sizes based on a security level.
/// \param maxPLen Maximum size of the field (modulus "p") in bits.
/// \param securityLevel Required security level in bits (at least 80)
/// \param pLen Result: length of "p" in bits
/// \param qLen Result: length of "q" in bits
/// \throws ZerocoinException if the process fails
///
/// Calculates the appropriate sizes of "p" and "q" for a prime-order
/// subgroup of order "q" embedded within a field "F_p". The sizes
/// are based on a 'securityLevel' provided in symmetric-equivalent
/// bits. Our choices slightly exceed the specs in FIPS 186-3:
///
/// securityLevel = 80: pLen = 1024, qLen = 256
/// securityLevel = 112: pLen = 2048, qLen = 256
/// securityLevel = 128: qLen = 3072, qLen = 320
///
/// If the length of "p" exceeds the length provided in "maxPLen", or
/// if "securityLevel < 80" this routine throws an exception.
void
calculateGroupParamLengths(uint32_t maxPLen, uint32_t securityLevel,
uint32_t *pLen, uint32_t *qLen)
{
*pLen = *qLen = 0;
if (securityLevel < 80) {
throw ZerocoinException("Security level must be at least 80 bits.");
} else if (securityLevel == 80) {
*qLen = 256;
*pLen = 1024;
} else if (securityLevel <= 112) {
*qLen = 256;
*pLen = 2048;
} else if (securityLevel <= 128) {
*qLen = 320;
*pLen = 3072;
} else {
throw ZerocoinException("Security level not supported.");
}
if (*pLen > maxPLen) {
throw ZerocoinException("Modulus size is too small for this security level.");
}
}
/// \brief Deterministically compute a set of group parameters using NIST procedures.
/// \param seedStr A byte string seeding the process.
/// \param pLen The desired length of the modulus "p" in bits
/// \param qLen The desired length of the order "q" in bits
/// \return An IntegerGroupParams object
///
/// Calculates the description of a group G of prime order "q" embedded within
/// a field "F_p". The input to this routine is in arbitrary seed. It uses the
/// algorithms described in FIPS 186-3 Appendix A.1.2 to calculate
/// primes "p" and "q". It uses the procedure in Appendix A.2.3 to
/// derive two generators "g", "h".
IntegerGroupParams
deriveIntegerGroupParams(uint256 seed, uint32_t pLen, uint32_t qLen)
{
IntegerGroupParams result;
Bignum p;
Bignum q;
uint256 pSeed, qSeed;
// Calculate "p" and "q" and "domain_parameter_seed" from the
// "seed" buffer above, using the procedure described in NIST
// FIPS 186-3, Appendix A.1.2.
calculateGroupModulusAndOrder(seed, pLen, qLen, &(result.modulus),
&(result.groupOrder), &pSeed, &qSeed);
// Calculate the generators "g", "h" using the process described in
// NIST FIPS 186-3, Appendix A.2.3. This algorithm takes ("p", "q",
// "domain_parameter_seed", "index"). We use "index" value 1
// to generate "g" and "index" value 2 to generate "h".
result.g = calculateGroupGenerator(seed, pSeed, qSeed, result.modulus, result.groupOrder, 1);
result.h = calculateGroupGenerator(seed, pSeed, qSeed, result.modulus, result.groupOrder, 2);
// Perform some basic tests to make sure we have good parameters
if ((uint32_t)(result.modulus.bitSize()) < pLen || // modulus is pLen bits long
(uint32_t)(result.groupOrder.bitSize()) < qLen || // order is qLen bits long
!(result.modulus.isPrime()) || // modulus is prime
!(result.groupOrder.isPrime()) || // order is prime
!((result.g.pow_mod(result.groupOrder, result.modulus)).isOne()) || // g^order mod modulus = 1
!((result.h.pow_mod(result.groupOrder, result.modulus)).isOne()) || // h^order mod modulus = 1
((result.g.pow_mod(Bignum(100), result.modulus)).isOne()) || // g^100 mod modulus != 1
((result.h.pow_mod(Bignum(100), result.modulus)).isOne()) || // h^100 mod modulus != 1
result.g == result.h || // g != h
result.g.isOne()) { // g != 1
// If any of the above tests fail, throw an exception
throw ZerocoinException("Group parameters are not valid");
}
return result;
}
/// \brief Deterministically compute a set of group parameters with a specified order.
/// \param groupOrder The order of the group
/// \return An IntegerGroupParams object
///
/// Given "q" calculates the description of a group G of prime order "q" embedded within
/// a field "F_p".
IntegerGroupParams
deriveIntegerGroupFromOrder(Bignum &groupOrder)
{
IntegerGroupParams result;
// Set the order to "groupOrder"
result.groupOrder = groupOrder;
// Try possible values for "modulus" of the form "groupOrder * 2 * i" where
// "p" is prime and i is a counter starting at 1.
for (uint32_t i = 1; i < NUM_SCHNORRGEN_ATTEMPTS; i++) {
// Set modulus equal to "groupOrder * 2 * i"
result.modulus = (result.groupOrder * Bignum(i*2)) + Bignum(1);
// Test the result for primality
// TODO: This is a probabilistic routine and thus not the right choice
if (result.modulus.isPrime(256)) {
// Success.
//
// Calculate the generators "g", "h" using the process described in
// NIST FIPS 186-3, Appendix A.2.3. This algorithm takes ("p", "q",
// "domain_parameter_seed", "index"). We use "index" value 1
// to generate "g" and "index" value 2 to generate "h".
uint256 seed = calculateSeed(groupOrder, "", 128, "");
uint256 pSeed = calculateHash(seed);
uint256 qSeed = calculateHash(pSeed);
result.g = calculateGroupGenerator(seed, pSeed, qSeed, result.modulus, result.groupOrder, 1);
result.h = calculateGroupGenerator(seed, pSeed, qSeed, result.modulus, result.groupOrder, 2);
// Perform some basic tests to make sure we have good parameters
if (!(result.modulus.isPrime()) || // modulus is prime
!(result.groupOrder.isPrime()) || // order is prime
!((result.g.pow_mod(result.groupOrder, result.modulus)).isOne()) || // g^order mod modulus = 1
!((result.h.pow_mod(result.groupOrder, result.modulus)).isOne()) || // h^order mod modulus = 1
((result.g.pow_mod(Bignum(100), result.modulus)).isOne()) || // g^100 mod modulus != 1
((result.h.pow_mod(Bignum(100), result.modulus)).isOne()) || // h^100 mod modulus != 1
result.g == result.h || // g != h
result.g.isOne()) { // g != 1
// If any of the above tests fail, throw an exception
throw ZerocoinException("Group parameters are not valid");
}
return result;
}
}
// If we reached this point group generation has failed. Throw an exception.
throw ZerocoinException("Too many attempts to generate Schnorr group.");
}
/// \brief Deterministically compute a group description using NIST procedures.
/// \param seed A byte string seeding the process.
/// \param pLen The desired length of the modulus "p" in bits
/// \param qLen The desired length of the order "q" in bits
/// \param resultModulus A value "p" describing a finite field "F_p"
/// \param resultGroupOrder A value "q" describing the order of a subgroup
/// \param resultDomainParameterSeed A resulting seed for use in later calculations.
///
/// Calculates the description of a group G of prime order "q" embedded within
/// a field "F_p". The input to this routine is in arbitrary seed. It uses the
/// algorithms described in FIPS 186-3 Appendix A.1.2 to calculate
/// primes "p" and "q".
void
calculateGroupModulusAndOrder(uint256 seed, uint32_t pLen, uint32_t qLen,
Bignum *resultModulus, Bignum *resultGroupOrder,
uint256 *resultPseed, uint256 *resultQseed)
{
// Verify that the seed length is >= qLen
if (qLen > (sizeof(seed)) * 8) {
// TODO: The use of 256-bit seeds limits us to 256-bit group orders. We should probably change this.
// throw ZerocoinException("Seed is too short to support the required security level.");
}
#ifdef ZEROCOIN_DEBUG
cout << "calculateGroupModulusAndOrder: pLen = " << pLen << endl;
#endif
// Generate a random prime for the group order.
// This may throw an exception, which we'll pass upwards.
// Result is the value "resultGroupOrder", "qseed" and "qgen_counter".
uint256 qseed;
uint32_t qgen_counter;
*resultGroupOrder = generateRandomPrime(qLen, seed, &qseed, &qgen_counter);
// Using ⎡pLen / 2 + 1⎤ as the length and qseed as the input_seed, use the random prime
// routine to obtain p0 , pseed, and pgen_counter. We pass exceptions upward.
uint32_t p0len = ceil((pLen / 2.0) + 1);
uint256 pseed;
uint32_t pgen_counter;
Bignum p0 = generateRandomPrime(p0len, qseed, &pseed, &pgen_counter);
// Set x = 0, old_counter = pgen_counter
uint32_t old_counter = pgen_counter;
// Generate a random integer "x" of pLen bits
uint32_t iterations;
Bignum x = generateIntegerFromSeed(pLen, pseed, &iterations);
pseed += (iterations + 1);
// Set x = 2^{pLen−1} + (x mod 2^{pLen–1}).
Bignum powerOfTwo = Bignum(2).pow(pLen-1);
x = powerOfTwo + (x % powerOfTwo);
// t = ⎡x / (2 * resultGroupOrder * p0)⎤.
// TODO: we don't have a ceiling function
Bignum t = x / (Bignum(2) * (*resultGroupOrder) * p0);
// Now loop until we find a valid prime "p" or we fail due to
// pgen_counter exceeding ((4*pLen) + old_counter).
for ( ; pgen_counter <= ((4*pLen) + old_counter) ; pgen_counter++) {
// If (2 * t * resultGroupOrder * p0 + 1) > 2^{pLen}, then
// t = ⎡2^{pLen−1} / (2 * resultGroupOrder * p0)⎤.
powerOfTwo = Bignum(2).pow(pLen);
Bignum prod = (Bignum(2) * t * (*resultGroupOrder) * p0) + Bignum(1);
if (prod > powerOfTwo) {
// TODO: implement a ceil function
t = Bignum(2).pow(pLen-1) / (Bignum(2) * (*resultGroupOrder) * p0);
}
// Compute a candidate prime resultModulus = 2tqp0 + 1.
*resultModulus = (Bignum(2) * t * (*resultGroupOrder) * p0) + Bignum(1);
// Verify that resultModulus is prime. First generate a pseudorandom integer "a".
Bignum a = generateIntegerFromSeed(pLen, pseed, &iterations);
pseed += iterations + 1;
// Set a = 2 + (a mod (resultModulus–3)).
a = Bignum(2) + (a % ((*resultModulus) - Bignum(3)));
// Set z = a^{2 * t * resultGroupOrder} mod resultModulus
Bignum z = a.pow_mod(Bignum(2) * t * (*resultGroupOrder), (*resultModulus));
// If GCD(z–1, resultModulus) == 1 AND (z^{p0} mod resultModulus == 1)
// then we have found our result. Return.
if ((resultModulus->gcd(z - Bignum(1))).isOne() &&
(z.pow_mod(p0, (*resultModulus))).isOne()) {
// Success! Return the seeds and primes.
*resultPseed = pseed;
*resultQseed = qseed;
return;
}
// This prime did not work out. Increment "t" and try again.
t = t + Bignum(1);
} // loop continues until pgen_counter exceeds a limit
// We reach this point only if we exceeded our maximum iteration count.
// Throw an exception.
throw ZerocoinException("Unable to generate a prime modulus for the group");
}
/// \brief Deterministically compute a generator for a given group.
/// \param seed A first seed for the process.
/// \param pSeed A second seed for the process.
/// \param qSeed A third seed for the process.
/// \param modulus Proposed prime modulus for the field.
/// \param groupOrder Proposed order of the group.
/// \param index Index value, selects which generator you're building.
/// \return The resulting generator.
/// \throws A ZerocoinException if error.
///
/// Generates a random group generator deterministically as a function of (seed,pSeed,qSeed)
/// Uses the algorithm described in FIPS 186-3 Appendix A.2.3.
Bignum
calculateGroupGenerator(uint256 seed, uint256 pSeed, uint256 qSeed, Bignum modulus, Bignum groupOrder, uint32_t index)
{
Bignum result;
// Verify that 0 <= index < 256
if (index > 255) {
throw ZerocoinException("Invalid index for group generation");
}
// Compute e = (modulus - 1) / groupOrder
Bignum e = (modulus - Bignum(1)) / groupOrder;
// Loop until we find a generator
for (uint32_t count = 1; count < MAX_GENERATOR_ATTEMPTS; count++) {
// hash = Hash(seed || pSeed || qSeed || “ggen” || index || count
uint256 hash = calculateGeneratorSeed(seed, pSeed, qSeed, "ggen", index, count);
Bignum W(hash);
// Compute result = W^e mod p
result = W.pow_mod(e, modulus);
// If result > 1, we have a generator
if (result > 1) {
return result;
}
}
// We only get here if we failed to find a generator
throw ZerocoinException("Unable to find a generator, too many attempts");
}
/// \brief Deterministically compute a random prime number.
/// \param primeBitLen Desired bit length of the prime.
/// \param in_seed Input seed for the process.
/// \param out_seed Result: output seed from the process.
/// \param prime_gen_counter Result: number of iterations required.
/// \return The resulting prime number.
/// \throws A ZerocoinException if error.
///
/// Generates a random prime number of primeBitLen bits from a given input
/// seed. Uses the Shawe-Taylor algorithm as described in FIPS 186-3
/// Appendix C.6. This is a recursive function.
Bignum
generateRandomPrime(uint32_t primeBitLen, uint256 in_seed, uint256 *out_seed,
uint32_t *prime_gen_counter)
{
// Verify that primeBitLen is not too small
if (primeBitLen < 2) {
throw ZerocoinException("Prime length is too short");
}
// If primeBitLen < 33 bits, perform the base case.
if (primeBitLen < 33) {
Bignum result(0);
// Set prime_seed = in_seed, prime_gen_counter = 0.
uint256 prime_seed = in_seed;
(*prime_gen_counter) = 0;
// Loop up to "4 * primeBitLen" iterations.
while ((*prime_gen_counter) < (4 * primeBitLen)) {
// Generate a pseudorandom integer "c" of length primeBitLength bits
uint32_t iteration_count;
Bignum c = generateIntegerFromSeed(primeBitLen, prime_seed, &iteration_count);
#ifdef ZEROCOIN_DEBUG
cout << "generateRandomPrime: primeBitLen = " << primeBitLen << endl;
cout << "Generated c = " << c << endl;
#endif
prime_seed += (iteration_count + 1);
(*prime_gen_counter)++;
// Set "intc" to be the least odd integer >= "c" we just generated
uint32_t intc = c.getulong();
intc = (2 * floor(intc / 2.0)) + 1;
#ifdef ZEROCOIN_DEBUG
cout << "Should be odd. c = " << intc << endl;
cout << "The big num is: c = " << c << endl;
#endif
// Perform trial division on this (relatively small) integer to determine if "intc"
// is prime. If so, return success.
if (primalityTestByTrialDivision(intc)) {
// Return "intc" converted back into a Bignum and "prime_seed". We also updated
// the variable "prime_gen_counter" in previous statements.
result = intc;
*out_seed = prime_seed;
// Success
return result;
}
} // while()
// If we reached this point there was an error finding a candidate prime
// so throw an exception.
throw ZerocoinException("Unable to find prime in Shawe-Taylor algorithm");
// END OF BASE CASE
}
// If primeBitLen >= 33 bits, perform the recursive case.
else {
// Recurse to find a new random prime of roughly half the size
uint32_t newLength = ceil((double)primeBitLen / 2.0) + 1;
Bignum c0 = generateRandomPrime(newLength, in_seed, out_seed, prime_gen_counter);
// Generate a random integer "x" of primeBitLen bits using the output
// of the previous call.
uint32_t numIterations;
Bignum x = generateIntegerFromSeed(primeBitLen, *out_seed, &numIterations);
(*out_seed) += numIterations + 1;
// Compute "t" = ⎡x / (2 * c0⎤
// TODO no Ceiling call
Bignum t = x / (Bignum(2) * c0);
// Repeat the following procedure until we find a prime (or time out)
for (uint32_t testNum = 0; testNum < MAX_PRIMEGEN_ATTEMPTS; testNum++) {
// If ((2 * t * c0) + 1 > 2^{primeBitLen}),
// then t = ⎡2^{primeBitLen} – 1 / (2 * c0)⎤.
if ((Bignum(2) * t * c0) > (Bignum(2).pow(Bignum(primeBitLen)))) {
t = ((Bignum(2).pow(Bignum(primeBitLen))) - Bignum(1)) / (Bignum(2) * c0);
}
// Set c = (2 * t * c0) + 1
Bignum c = (Bignum(2) * t * c0) + Bignum(1);
// Increment prime_gen_counter
(*prime_gen_counter)++;
// Test "c" for primality as follows:
// 1. First pick an integer "a" in between 2 and (c - 2)
Bignum a = generateIntegerFromSeed(c.bitSize(), (*out_seed), &numIterations);
a = Bignum(2) + (a % (c - Bignum(3)));
(*out_seed) += (numIterations + 1);
// 2. Compute "z" = a^{2*t} mod c
Bignum z = a.pow_mod(Bignum(2) * t, c);
// 3. Check if "c" is prime.
// Specifically, verify that gcd((z-1), c) == 1 AND (z^c0 mod c) == 1
// If so we return "c" as our result.
if (c.gcd(z - Bignum(1)).isOne() && z.pow_mod(c0, c).isOne()) {
// Return "c", out_seed and prime_gen_counter
// (the latter two of which were already updated)
return c;
}
// 4. If the test did not succeed, increment "t" and loop
t = t + Bignum(1);
} // end of test loop
}
// We only reach this point if the test loop has iterated MAX_PRIMEGEN_ATTEMPTS
// and failed to identify a valid prime. Throw an exception.
throw ZerocoinException("Unable to generate random prime (too many tests)");
}
Bignum
generateIntegerFromSeed(uint32_t numBits, uint256 seed, uint32_t *numIterations)
{
Bignum result(0);
uint32_t iterations = ceil((double)numBits / (double)HASH_OUTPUT_BITS);
#ifdef ZEROCOIN_DEBUG
cout << "numBits = " << numBits << endl;
cout << "iterations = " << iterations << endl;
#endif
// Loop "iterations" times filling up the value "result" with random bits
for (uint32_t count = 0; count < iterations; count++) {
// result += ( H(pseed + count) * 2^{count * p0len} )
result += Bignum(calculateHash(seed + count)) * Bignum(2).pow(count * HASH_OUTPUT_BITS);
}
result = Bignum(2).pow(numBits - 1) + (result % (Bignum(2).pow(numBits - 1)));
// Return the number of iterations and the result
*numIterations = iterations;
return result;
}
/// \brief Determines whether a uint32_t is a prime through trial division.
/// \param candidate Candidate to test.
/// \return true if the value is prime, false otherwise
///
/// Performs trial division to determine whether a uint32_t is prime.
bool
primalityTestByTrialDivision(uint32_t candidate)
{
// TODO: HACK HACK WRONG WRONG
Bignum canBignum(candidate);
return canBignum.isPrime();
}
} // namespace libzerocoin