forked from neosr-project/neosr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
73 lines (62 loc) · 2.49 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import logging
import sys
from os import path as osp
from pathlib import Path
from time import time
import torch
from neosr.data import build_dataloader, build_dataset
from neosr.models import build_model
from neosr.utils import get_root_logger, get_time_str, make_exp_dirs, tc
from neosr.utils.options import parse_options
def test_pipeline(root_path: str) -> None:
# parse options, set distributed setting, set ramdom seed
opt, _ = parse_options(root_path, is_train=False)
torch.set_default_device("cuda")
torch.backends.cudnn.benchmark = True
# mkdir and initialize loggers
make_exp_dirs(opt)
log_file = Path(opt["path"]["log"]) / f"test_{opt['name']}_{get_time_str()}.log"
logger = get_root_logger(
logger_name="neosr", log_level=logging.INFO, log_file=str(log_file)
)
# create test dataset and dataloader
test_loaders = []
for _, dataset_opt in sorted(opt["datasets"].items()):
test_set = build_dataset(dataset_opt)
num_gpu = opt.get("num_gpu", "auto")
test_loader = build_dataloader(
test_set, # type: ignore[reportArgumentType]
dataset_opt,
num_gpu=num_gpu,
dist=opt["dist"],
sampler=None,
seed=opt["manual_seed"],
)
logger.info(f"Number of test images in {dataset_opt['name']}: {len(test_set)}") # type: ignore[reportArgumentType]
test_loaders.append(test_loader)
# create model
model = build_model(opt)
try:
for test_loader in test_loaders:
test_set_name = test_loader.dataset.opt["name"] # type: ignore[attr-defined]
logger.info(f"Testing {test_set_name}...")
start_time = time()
model.validation( # type: ignore[reportAttributeAccessIssue,attr-defined]
test_loader,
current_iter=opt["name"],
tb_logger=None,
save_img=opt["val"].get("save_img", True),
)
end_time = time()
total_time = end_time - start_time
n_img = len(test_loader.dataset) # type: ignore[arg-type]
fps = n_img / total_time
logger.info(
f"{tc.light_green}Inference took {total_time:.2f} seconds, at {fps:.2f} fps.{tc.end}"
)
except KeyboardInterrupt:
logger.info(f"{tc.red}Interrupted.{tc.end}")
sys.exit(0)
if __name__ == "__main__":
root_path = Path.resolve(Path(__file__) / osp.pardir)
test_pipeline(str(root_path))