-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathutils.py
69 lines (55 loc) · 2.58 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import pandas as pd
from tensorflow.keras import backend
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import ReduceLROnPlateau, EarlyStopping, ModelCheckpoint
from pprint import pprint
def test_model(model_fn, train_loader, test_loader, train_steps=50, val_steps=50,
epochs=1, iterations=5, lr=1e-4, model_params={}, save_pth=None) -> list:
"""
Test a model for n iterations. Define the number of epochs, training steps
and validation steps used in each iteration.
Returns the training history as a list
"""
hists = []
for i in range(iterations):
# compile model
model = model_fn(output_channels=1, **model_params)
model.compile(optimizer=Adam(lr=lr), loss='binary_crossentropy', metrics=['accuracy'])
# Callbacks
# Reduce learning rate on plateau. Patience is one less than early stopping to give
# new learning rate a try
patience = 1
reduce_lr = ReduceLROnPlateau(monitor='val_acc', factor=0.1, patience=patience-1, verbose=1)
# Stop training when validation accuracy decreases on subsequent epoch
early_stopping = EarlyStopping(monitor='val_acc', patience=patience+1, verbose=1)
callbacks = [reduce_lr, early_stopping]
# Save best model if path provided
if save_pth:
save_model = ModelCheckpoint(save_pth, save_best_only=True, monitor='val_acc')
callbacks += [save_model]
# Fit the model
history = model.fit_generator(train_loader, steps_per_epoch=train_steps, epochs=epochs,
validation_data=test_loader, validation_steps=val_steps,
callbacks=callbacks)
hists.append(history.history)
# Clear weights so we can retrain model from scratch in next iteration
backend.clear_session()
# Return training history
return hists
def hists2df(hists:list):
"""
Converts list of training histories each returned from keras.model.fit_generator
to a pandas dataframe.
"""
cols = list(hists[0].keys()) + ['experiment', 'epoch']
df = pd.DataFrame(columns=cols)
experiment_number = 0
for experiment in hists:
epoch_count = len(experiment['acc'])
for epoch in range(epoch_count):
r = {k: experiment[k][epoch] for k in experiment}
r['experiment'] = experiment_number
r['epoch'] = epoch
df = df.append(r, ignore_index=True)
experiment_number += 1
return df