diff --git a/Makefile b/Makefile
new file mode 100644
index 0000000..2a9af73
--- /dev/null
+++ b/Makefile
@@ -0,0 +1,5 @@
+all:
+ jekyll clean
+ jekyll build
+ cd _site && tar -czvf site.tar.gz *
+ mv _site/site.tar.gz .
diff --git a/css/style_overrides.css b/css/style_overrides.css
index cde918e..a4723fc 100644
--- a/css/style_overrides.css
+++ b/css/style_overrides.css
@@ -82,7 +82,7 @@ body {
}
.pubtitle {
- font-size: 1.075em;
+ font-size: 1.05em;
color: black;
font-weight: bold;
}
diff --git a/index.html b/index.html
index 3edcee2..4c8df45 100644
--- a/index.html
+++ b/index.html
@@ -45,7 +45,7 @@
About Me
Welcome to my corner of the internet! I am a 4th year PhD student at the University of Pennsylvania
advised by Prof. Mayur Naik.
- My research interests span Machine Learning, Software Engineering and Programming Languages.
+ My research interests span Programming Languages and Machine Learning.
Specifically, my research leverages techniques from program synthesis and analysis to build tools and frameworks to enable machine learning practitioners
effectively understand where their models fail, and ways to fix them.
My other research interests include developing program synthesis techniques to streamline software analysis, bug finding, and code generation.
@@ -80,8 +80,8 @@ Research
My research aims to bridge this gap by developing novel techniques and tools to allow the systemic analysis
and debugging of machine learning models.
- To this end, my framework, SQRL (pronounced squirrel) uses data-
- driven program synthesis techniques to characterize the errors in machine learning models in terms of
+ To this end, my framework, SQRL (pronounced squirrel) uses data-driven
+ program synthesis techniques to characterize the errors in machine learning models in terms of
grounded concepts and relations intuitive to practitioners.
You can read more about SQRL in our blog post here.
@@ -112,25 +112,25 @@ Publications
-
Recent Manuscripts
+ Recent Manuscripts
-
+
Interactive Code Generation via Test-Driven User-Intent Formalization
- Shuvendu K. Lahiri*, Aaditya Naik*, Georgios Sakkas*, Piali Choudhury, Curtis von Veh, Madanlal Musuvathi, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao
+ Shuvendu K. Lahiri*, Aaditya Naik*, Georgios Sakkas*, Piali Choudhury, Curtis von Veh, Madanlal Musuvathi, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao
Arxiv Preprint.
@@ -146,12 +146,12 @@
Recent Manuscripts
-
Conference Papers
+ Conference Papers
Relational Query Synthesis ⨝ Decision Tree Learning
- Aaditya Naik, Aalok Thakkar, Adam Stein, Mayur Naik, Rajeev Alur
+ Aaditya Naik, Aalok Thakkar, Adam Stein, Mayur Naik, Rajeev Alur
Proceedings of
VLDB 2024.
@@ -165,7 +165,7 @@
Conference Papers
Do Machine Learning Models Learn Statistical Rules Inferred from Data?
- Aaditya Naik, Yinjun Wu, Mayur Naik, Eric Wong
+ Aaditya Naik, Yinjun Wu, Mayur Naik, Eric Wong
Proceedings of
ICML 2023.
@@ -179,7 +179,7 @@
Conference Papers
CodeTrek: Flexible Modeling of Code using an Extensible Relational Representation.
- Pardis Pashakhanloo, Aaditya Naik, Yuepeng Wang, Hanjun Dai, Petros Maniatis, Mayur Naik
+ Pardis Pashakhanloo, Aaditya Naik, Yuepeng Wang, Hanjun Dai, Petros Maniatis, Mayur Naik
Proceedings of
ICLR 2022.
@@ -199,7 +199,7 @@
Conference Papers
Sporq: An Interactive Environment for Exploring Code Using Query-by-Example.
- Aaditya Naik, Jonathan Mendelson, Nathaniel Sands, Yuepeng Wang, Mayur Naik, Mukund Raghothaman
+ Aaditya Naik, Jonathan Mendelson, Nathaniel Sands, Yuepeng Wang, Mayur Naik, Mukund Raghothaman
Proceedings of
UIST 2021.
@@ -215,7 +215,7 @@
Conference Papers
Example-Guided Synthesis of Relational Queries.
- Aalok Thakkar, Aaditya Naik, Nate Sands, Mukund Raghothaman, Mayur Naik, Rajeev Alur
+ Aalok Thakkar, Aaditya Naik, Nate Sands, Mukund Raghothaman, Mayur Naik, Rajeev Alur
Proceedings of
PLDI 2021.
@@ -231,7 +231,7 @@
Conference Papers
GenSynth: Synthesizing Datalog Programs without Language Bias.
- Jonathan Mendelson*, Aaditya Naik*, Mukund Ragothaman, Mayur Naik
+ Jonathan Mendelson*, Aaditya Naik*, Mukund Ragothaman, Mayur Naik
Proceedings of
AAAI 2021.
@@ -254,7 +254,7 @@
Conference Papers
Code2Inv: A Deep Learning Framework for Program Verification.
- Xujie Si*, Aaditya Naik*, Hanjun Dai, Mayur Naik, Le Song
+ Xujie Si*, Aaditya Naik*, Hanjun Dai, Mayur Naik, Le Song
Proceedings of
CAV 2020.
@@ -278,14 +278,14 @@
Conference Papers
-
Workshop Papers
+ Workshop Papers
Learning to Walk over Relational Graphs of Source Code
- Pardis Pashakhanloo, Aaditya Naik, Hanjun Dai, Petros Maniatis, Mayur Naik
+ Pardis Pashakhanloo, Aaditya Naik, Hanjun Dai, Petros Maniatis, Mayur Naik