-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprediction.py
160 lines (128 loc) · 5.66 KB
/
prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import pandas as pd
import numpy as np
from sklearn.svm import SVC
from sklearn.metrics import f1_score, accuracy_score, balanced_accuracy_score, roc_auc_score
from sklearn.preprocessing import MinMaxScaler
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier, BaggingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.dummy import DummyClassifier
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
import umap
from tqdm import tqdm
from xgboost import XGBClassifier
def prepare_dataset(df, same_day):
"""
Prepares the dataset for modeling, including feature selection and target assignment.
"""
if df.isnull().sum().sum() > 0:
raise ValueError("Dataset contains null values.")
# Drop unnecessary columns
columns_to_drop = ['ich_score', 'nihss', 'index', 'Unnamed: 0']
df = df.drop(columns=columns_to_drop, errors="ignore").reset_index(drop=True)
if "max_hpim_aff_1_to_1" in df.columns:
df = df.dropna(subset=["max_hpim_aff_1_to_1"])
if same_day:
y = df.pop('delirium_stat')
df = df.drop(columns=['Day_Num'], errors='ignore')
else:
last_day_indices = df.groupby('Patient_ID').tail(1).index
df['delirium_stat_next'] = df['delirium_stat'].shift(-1)
df = df.drop(last_day_indices)
y = df.pop('delirium_stat_next')
df = df.drop(columns=['Day_Num', 'delirium_stat'], errors='ignore')
# Extract and drop patient identifiers
id_list = df.pop('Patient_ID', errors='ignore').values
df = df.drop(columns=['date'], errors='ignore').astype(float)
return df, y, id_list
def split_indices_by_id(id_list, train_ratio):
"""
Splits data indices by patient ID while maintaining disjoint train and test sets.
"""
test_ratio = 1 - train_ratio
valid_range = [len(id_list) * (test_ratio - 0.04), len(id_list) * (test_ratio + 0.04)]
unique_ids = list(set(id_list))
selected_ids = []
total_count = 0
while True:
chosen_id = np.random.choice(unique_ids)
if chosen_id in selected_ids:
continue
id_count = np.sum(id_list == chosen_id)
if total_count + id_count <= valid_range[1]:
selected_ids.append(chosen_id)
total_count += id_count
if valid_range[0] <= total_count <= valid_range[1]:
break
train_indices = [i for i, id_ in enumerate(id_list) if id_ not in selected_ids]
test_indices = [i for i, id_ in enumerate(id_list) if id_ in selected_ids]
return train_indices, test_indices
def block_train_test_split(id_list, X, y, test_size):
"""
Splits the data into train and test sets while ensuring patient-wise disjointness.
"""
train_indices, test_indices = split_indices_by_id(id_list, 1 - test_size)
X_train, X_test = X.iloc[train_indices], X.iloc[test_indices]
y_train, y_test = y.iloc[train_indices], y.iloc[test_indices]
id_train, id_test = id_list[train_indices], id_list[test_indices]
return X_train, X_test, y_train, y_test, id_train, id_test
def make_classifier(classifier_name):
"""
Creates a classifier pipeline and parameter grid for hyperparameter tuning.
"""
classifiers = {
"LogisticRegression": (LogisticRegression(penalty='l1', solver='liblinear'), 'lg', {}),
"Baseline": (DummyClassifier(strategy='most_frequent'), 'bsln', {}),
"DecisionTree": (DecisionTreeClassifier(), 'dt', {
'max_depth': np.linspace(1, 32, 32),
'min_samples_split': np.linspace(0.1, 1.0, 10),
'min_samples_leaf': np.linspace(0.1, 0.5, 5)
}),
"SVM": (SVC(), 'svm', {'C': [0.001, 0.01, 0.1, 1, 10], 'gamma': [0.001, 0.01, 0.1, 1]}),
"ExtraTree": (ExtraTreesClassifier(), 'et', {}),
"BaggingTree": (BaggingClassifier(), 'bc', {
'n_estimators': [10, 20, 30, 40],
'max_samples': np.linspace(0.1, 1.0, 10)
}),
"RandomForest": (RandomForestClassifier(), 'rf', {
"n_estimators": [10, 18, 22],
"max_depth": [3, 5],
"min_samples_split": [15, 20],
"min_samples_leaf": [5, 10, 20]
}),
"XGBoost": (XGBClassifier(eval_metric='logloss'), 'xgb', {
"max_depth": [5],
"min_child_weight": [1],
"colsample_bytree": [0.8],
"subsample": [0.8]
})
}
if classifier_name not in classifiers:
raise ValueError(f"Unknown classifier: {classifier_name}")
return classifiers[classifier_name]
def make_pipeline(classifier_name, use_umap=False, n_umap_components=20):
"""
Creates a full pipeline with optional UMAP for dimensionality reduction.
"""
clf, clf_abb, _ = make_classifier(classifier_name)
steps = [("imputer", SimpleImputer(strategy='median')), ("scaler", MinMaxScaler())]
if use_umap:
steps.append(("umap", umap.UMAP(n_components=n_umap_components, random_state=456)))
steps.append((clf_abb, clf))
return Pipeline(steps)
def run_experiments(X, y, id_list, epochs, use_umap, n_umap_components, classifier):
"""
Trains and evaluates models, returning performance metrics.
"""
metrics = {
"f1": f1_score,
"accuracy": accuracy_score,
"balanced_accuracy": balanced_accuracy_score,
"roc_auc": roc_auc_score
}
X_train, X_test, y_train, y_test, _, _ = block_train_test_split(id_list, X, y, test_size=0.2)
pipeline = make_pipeline(classifier, use_umap, n_umap_components)
pipeline.fit(X_train, y_train)
y_pred = pipeline.predict(X_test)
return {name: metric(y_test, y_pred) for name, metric in metrics.items()}