-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathbuild_committee_dataset.py
264 lines (204 loc) · 9.74 KB
/
build_committee_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import argparse
import json
import os
import random
import scipy.io
import codecs
import numpy as np
import cPickle as pickle
from collections import defaultdict
from nltk.tokenize import word_tokenize
from imagernn.data_provider import getDataProvider
from imagernn.imagernn_utils import decodeGenerator, eval_split, eval_split_theano
from nltk.align.bleu import BLEU
import math
# UTILS needed for BLEU score evaluation
def BLEUscore(candidate, references, weights):
p_ns = [BLEU.modified_precision(candidate, references, i) for i, _ in enumerate(weights, start=1)]
if all([x > 0 for x in p_ns]):
s = math.fsum(w * math.log(p_n) for w, p_n in zip(weights, p_ns))
bp = BLEU.brevity_penalty(candidate, references)
return bp * math.exp(s)
else: # this is bad
return 0
def evalCandidate(candidate, references):
"""
candidate is a single list of words, references is a list of lists of words
written by humans.
"""
b1 = BLEUscore(candidate, references, [1.0])
b2 = BLEUscore(candidate, references, [0.5, 0.5])
b3 = BLEUscore(candidate, references, [1/3.0, 1/3.0, 1/3.0])
return [b1,b2,b3]
def get_bleu_scores(cands,refs):
open('eval/output', 'w').write('\n'.join(cands))
for q in xrange(5):
open('eval/reference'+`q`, 'w').write('\n'.join([x[q] for x in refs]))
owd = os.getcwd()
os.chdir('eval')
os.system('./multi-bleu.perl reference < output > scr')
str = open('scr', 'r').read()
bleus = map(float,str.split('=')[1].split('(')[0].split('/'))
os.chdir(owd)
return bleus
def eval_bleu_all_cand(params, com_dataset):
bleu_array = np.zeros((3,n_imgs*n_sent))
# Also load one of the result structures as the template
res_struct = json.load(open(com_dataset['members_results'][0],'r'))
#owd = os.getcwd()
#os.chdir('eval')
sid = 0
for i in xrange(n_imgs):
img = com_dataset['images'][i]
refs = [r.values()[0] for r in res_struct['imgblobs'][i]['references']]
#for q in xrange(5):
# open('reference'+`q`, 'w').write('\n'.join([x[q] for x in refs]))
for sent in img['sentences']:
#os.system('./multi-bleu.perl reference <<<"%s" > scr'%(sent['raw']))
#str = open('scr', 'r').read()
#bleus = map(float,str.split('=')[1].split('(')[0].split('/'))
bleus = evalCandidate(sent['raw'],refs)
bleu_array[:,sid] = bleus
sid +=1
if ((i) % 500) == 0 :
print('At %d\r'%i)
#os.chdir(owd)
return bleu_array
def evaluate_decision(params, com_dataset, eval_array):
indx = 0
n_memb = com_dataset['n_memb']
n_sent = com_dataset['n_sent']
n_imgs = len(com_dataset['images'])
all_references = []
all_candidates = []
# Also load one of the result structures as the template
res_struct = json.load(open(com_dataset['members_results'][0],'r'))
scr = eval_array.sum(axis=0)
for i in xrange(n_imgs):
img = com_dataset['images'][i]
curr_scr = scr[i*n_sent: (i+1)* n_sent]
best = np.argmax(curr_scr)
res_struct['imgblobs'][i]['candidate']['logprob'] = curr_scr[best]
res_struct['imgblobs'][i]['candidate']['text'] = img['sentences'][best]['raw']
refs = [r.values()[0] for r in res_struct['imgblobs'][i]['references']]
#calculate bleu of each candidate with reference
all_references.append(refs)
all_candidates.append(img['sentences'][best]['raw'])
print 'writing intermediate files into eval/'
# invoke the perl script to get BLEU scores
print 'invoking eval/multi-bleu.perl script...'
bleus = get_bleu_scores(all_candidates, all_references)
res_struct['FinalBleu'] = bleus
print bleus
print 'saving result struct to %s' % (params['result_struct_filename'], )
json.dump(res_struct, open(params['result_struct_filename'], 'w'))
def hold_comittee_discussion(params, com_dataset):
n_memb = com_dataset['n_memb']
n_sent = com_dataset['n_sent']
n_imgs = len(com_dataset['images'])
eval_array = np.zeros((n_memb,n_imgs*n_sent))
model_id = 0
for mod in com_dataset['members_model']:
checkpoint = pickle.load(open(mod, 'rb'))
checkpoint_params = checkpoint['params']
dataset = checkpoint_params['dataset']
model_npy = checkpoint['model']
checkpoint_params['use_theano'] = 1
if 'image_feat_size' not in checkpoint_params:
checkpoint_params['image_feat_size'] = 4096
checkpoint_params['data_file'] = params['jsonFname'].rsplit('/')[-1]
dp = getDataProvider(checkpoint_params)
ixtoword = checkpoint['ixtoword']
blob = {} # output blob which we will dump to JSON for visualizing the results
blob['params'] = params
blob['checkpoint_params'] = checkpoint_params
blob['imgblobs'] = []
# iterate over all images in test set and predict sentences
BatchGenerator = decodeGenerator(checkpoint_params)
BatchGenerator.build_eval_other_sent(BatchGenerator.model_th, checkpoint_params,model_npy)
eval_batch_size = params.get('eval_batch_size',100)
eval_max_images = params.get('eval_max_images', -1)
wordtoix = checkpoint['wordtoix']
split = 'test'
print 'evaluating %s performance in batches of %d' % (split, eval_batch_size)
logppl = 0
logppln = 0
nsent = 0
gen_fprop = BatchGenerator.f_eval_other
blob['params'] = params
c_id = 0
for batch in dp.iterImageSentencePairBatch(split = split, max_batch_size = eval_batch_size, max_images = eval_max_images):
xWd, xId, maskd, lenS = dp.prepare_data(batch,wordtoix)
eval_array[model_id, c_id:c_id + xWd.shape[1]] = gen_fprop(xWd, xId, maskd)
c_id += xWd.shape[1]
model_id +=1
# Calculate oracle scores
bleu_array = eval_bleu_all_cand(params,com_dataset)
eval_results = {}
eval_results['logProb_feat'] = eval_array
eval_results['OracleBleu'] = bleu_array
#Save the mutual evaluations
params['comResFname'] = 'committee_evalSc_%s.json' % (params['fappend'])
com_dataset['com_evaluation'] = params['comResFname']
pickle.dump(eval_results, open(params['comResFname'], "wb"))
json.dump(com_dataset,open(params['jsonFname'], 'w'))
return eval_array
def main(params):
dataset = 'coco'
data_file = 'dataset.json'
# !assumptions on folder structure
dataset_root = os.path.join('data', dataset)
result_list = open(params['struct_list'], 'r').read().splitlines()
# Load all result files
result_struct = [json.load(open(res,'r')) for res in result_list]
# load the dataset into memory
dataset_path = os.path.join(dataset_root, data_file)
print 'BasicDataProvider: reading %s' % (dataset_path, )
dB = json.load(open(dataset_path, 'r'))
res_idx = 0
com_dataset = {}
com_dataset['dataset'] = 'coco';
com_dataset['members_results'] = result_list;
com_dataset['members_model'] = list(set([res['params']['checkpoint_path'] for res in result_struct]));
com_dataset['images'] = []
com_dataset['n_memb'] = len(com_dataset['members_model'])
com_dataset['n_sent'] = len(com_dataset['members_results'])
#pick only test images
# We are doing this circus in order to reuse the data provider class to form nice batches when doing evaluation
# The data provider expects the database files to be in original "dataset.json" format!
# Hence we copy all necessary fields from dataset.json and replace the refernce sentences with the sentences
# generated by our models
for img in dB['images']:
if img['split'] == 'test':
# Copy everything!
com_dataset['images'].append(img)
# delete reference sentences
com_dataset['images'][-1]['sentences'] = []
for res_st in result_struct:
#assert img['imgid'] == res_st['imgblobs'][res_idx]['imgid'], 'Ids dont match, Test %d %d'%(res_idx, mod_cnt)
com_dataset['images'][-1]['sentences'].append( {'img_id': img['imgid'],
'raw': res_st['imgblobs'][res_idx]['candidate']['text'],
'sentid':res_st['params']['beam_size'],
'mid':com_dataset['members_model'].index(res_st['params']['checkpoint_path']),
'tokens':word_tokenize(res_st['imgblobs'][res_idx]['candidate']['text'])
})
res_idx += 1
if res_idx == 5000:
break;
print 'Done with %d !Now writing back dataset ' % (res_idx)
params['jsonFname'] = 'committee_struct_%s.json' % (params['fappend'])
params['jsonFname'] = os.path.join(dataset_root, params['jsonFname'])
json.dump(com_dataset,open(params['jsonFname'], 'w'))
return com_dataset, params
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('struct_list', type=str, help='the input list of result structures to form committee from')
parser.add_argument('--fappend', type=str, default='', help='str to append to routput files')
parser.add_argument('--result_struct_filename', type=str, default='committee_result.json', help='filename of the result struct to save')
args = parser.parse_args()
params = vars(args) # convert to ordinary dict
print 'parsed parameters:'
print json.dumps(params, indent = 2)
com_dataset, params = main(params)
eval_array = hold_comittee_discussion(params,com_dataset)
#evaluate_decision(params, com_dataset, eval_array)