-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_adversarial_caption_gen.py
386 lines (322 loc) · 21.7 KB
/
train_adversarial_caption_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
import argparse
import json
import time
import datetime
import numpy as np
import code
import socket
import os
import theano
from theano import config
import theano.tensor as tensor
import cPickle as pickle
from imagernn.data_provider import getDataProvider, prepare_data
from imagernn.cnn_evaluatorTheano import CnnEvaluator
from imagernn.solver import Solver
from imagernn.imagernn_utils import decodeEvaluator, decodeGenerator, eval_split_theano
#from numbapro import cuda
from imagernn.utils import numpy_floatX, zipp, unzip, preProBuildWordVocab
from collections import defaultdict, OrderedDict
import signal
import sys
def dumpCheckpoint(filename, params, modelGen, modelEval, misc, it, val_ppl2):
filepath = os.path.join(params['checkpoint_output_directory'], filename)
model_npy_gen = unzip(modelGen)
model_npy_eval = unzip(modelEval)
checkpoint = {}
checkpoint['epoch'] = it
checkpoint['modelGen'] = model_npy_gen
checkpoint['modelEval'] = model_npy_eval
checkpoint['params'] = params
checkpoint['perplexity'] = val_ppl2
checkpoint['wordtoix'] = misc['wordtoix']
checkpoint['ixtoword'] = misc['ixtoword']
try:
pickle.dump(checkpoint, open(filepath, "wb"))
print 'saved checkpoint in %s' % (filepath, )
except Exception, e: # todo be more clever here
print 'tried to write checkpoint into %s but got error: ' % (filepath, )
print e
def main(params):
batch_size = params['batch_size']
word_count_threshold = params['word_count_threshold']
max_epochs = params['max_epochs']
host = socket.gethostname() # get computer hostname
# fetch the data provider
dp = getDataProvider(params)
# Initialize the optimizer
solver = Solver(params['solver'])
params['aux_inp_size'] = dp.aux_inp_size
params['image_feat_size'] = dp.img_feat_size
print 'Image feature size is %d, and aux input size is %d'%(params['image_feat_size'],params['aux_inp_size'])
misc = {} # stores various misc items that need to be passed around the framework
# go over all training sentences and find the vocabulary we want to use, i.e. the words that occur
# at least word_count_threshold number of times
misc['wordtoix'], misc['ixtoword'], bias_init_vector = preProBuildWordVocab(dp.iterSentences('train'), word_count_threshold)
params['vocabulary_size'] = len(misc['wordtoix'])
params['output_size'] = len(misc['ixtoword']) # these should match though
params['use_dropout'] = 1
# This initializes the model parameters and does matrix initializations
generator = decodeGenerator(params)
(gen_inp_list, predLogProb, predIdx, predCand, wOut_emb, updatesLstm) = generator.build_prediction_model(
generator.model_th, params, params['beam_size'])
wOut_emb = wOut_emb.reshape([wOut_emb.shape[0],wOut_emb.shape[2]])
f_gen_only = theano.function(gen_inp_list, [predLogProb, predIdx, wOut_emb], name='f_pred', updates=updatesLstm)
modelGen = generator.model_th
upListGen = generator.update_list
if params['share_Wemb']:
evaluator = decodeEvaluator(params, modelGen['Wemb'])
else:
evaluator = decodeEvaluator(params)
modelEval = evaluator.model_th
# Define the computational graph for relating the input image features and word indices to the
# log probability cost funtion.
(use_dropout_eval, eval_inp_list,
f_pred_fns, costs, predTh, modelEval) = evaluator.build_advers_eval(modelEval, params, gen_inp_list, wOut_emb)
# force overwrite here. The bias to the softmax is initialized to reflect word frequencies
# This is a bit of a hack, not happy about it
comb_inp_list = eval_inp_list
for inp in gen_inp_list:
if inp not in comb_inp_list:
comb_inp_list.append(inp)
# Compile an evaluation function.. Doesn't include gradients
# To be used for validation set evaluation
f_eval= theano.function(comb_inp_list, costs, name='f_eval', updates=updatesLstm)
# Now let's build a gradient computation graph and rmsprop update mechanism
if params['share_Wemb']:
modelEval.pop('Wemb')
if params['fix_Wemb']:
upListGen.remove('Wemb')
modelGenUpD = OrderedDict()
for k in upListGen:
modelGenUpD[k] = modelGen[k]
gradsEval = tensor.grad(costs[0], wrt=modelEval.values(),add_names=True)
gradsGen = tensor.grad(costs[1], wrt=modelGenUpD.values(), add_names=True)
lrEval = tensor.scalar(name='lrEval',dtype=config.floatX)
f_grad_comp_eval, f_param_update_eval, zg_eval, rg_eval, ud_eval= solver.build_solver_model(lrEval, modelEval, gradsEval,
comb_inp_list, costs[0], params)
lrGen = tensor.scalar(name='lrGen',dtype=config.floatX)
f_grad_comp_gen, f_param_update_gen, zg_gen, rg_gen, ud_gen = solver.build_solver_model(lrGen, modelGenUpD, gradsGen,
comb_inp_list, costs[1], params)
print 'model init done.'
print 'model has keys: ' + ', '.join(modelGen.keys())
# calculate how many iterations we need, One epoch is considered once going through all the sentences and not images
# Hence in case of coco/flickr this will 5* no of images
num_sentences_total = dp.getSplitSize('train', ofwhat = 'images')
num_iters_one_epoch = num_sentences_total / batch_size
max_iters = max_epochs * num_iters_one_epoch
iters_eval= num_iters_one_epoch//2
iters_gen = num_iters_one_epoch//4
eval_period_in_epochs = params['eval_period']
eval_period_in_iters = max(1, int(num_iters_one_epoch * eval_period_in_epochs))
top_val_ppl2 = -1
smooth_train_ppl2 = 0.5 # initially size of dictionary of confusion
val_ppl2 = len(misc['ixtoword'])
last_status_write_time = 0 # for writing worker job status reports
json_worker_status = {}
json_worker_status['params'] = params
json_worker_status['history'] = []
len_hist = defaultdict(int)
t_print_sec = 60
## Initialize the model parameters from the checkpoint file if we are resuming training
if params['checkpoint_file_name'] != 'None':
zipp(model_init_from,modelGen)
#zipp(rg_init,rgGen)
print("\nContinuing training from previous model\n. Already run for %0.2f epochs with validation perplx at %0.3f\n" % (checkpoint_init['epoch'], \
checkpoint_init['perplexity']))
pos_samp = np.arange(batch_size,dtype=np.int32)
print batch_size
##############################################################
# Define signal handler to catch ctl-c or kills so that we can save the model trained till that point
def signal_handler(signal, frame):
print('You pressed Ctrl+C! Saving Checkpoint Now before exiting!')
filename = 'advmodel_checkpoint_%s_%s_%s_%.2f_INT.p' % (params['dataset'], host, params['fappend'], val_ppl2)
dumpCheckpoint(filename, params, modelGen, modelEval, misc, it, val_ppl2)
sys.exit(0)
signal.signal(signal.SIGINT, signal_handler)
##############################################################
for it in xrange(max_epochs):
epoch = it * 1.0 / num_iters_one_epoch
# Enable using dropout in training
use_dropout_eval.set_value(1.)
for it2 in xrange(iters_eval):
t0 = time.time()
# fetch a batch of data
batch,_ = dp.sampPosNegSentSamps(params['eval_batch_size'] - params['rand_negs'])
real_inp_list, lenS = prepare_data(batch, misc['wordtoix'], maxlen=params['maxlen'], pos_samp=pos_samp, prep_for=params['eval_model'], rand_negs = params['rand_negs'])
# evaluate cost, gradient and perform parameter update
cost = f_grad_comp_eval(*real_inp_list)
f_param_update_eval(params['learning_rate_eval'])
dt = time.time() - t0
# Track training statistics
train_ppl2 = (np.e**(-cost)) #step_struct['stats']['ppl2']
smooth_train_ppl2 = 0.99 * smooth_train_ppl2 + 0.01 * train_ppl2 # smooth exponentially decaying moving average
if it2 == 0: smooth_train_ppl2 = train_ppl2
if it2 == 0: smooth_train_cost = cost
else: smooth_train_cost = 0.99 * smooth_train_cost + 0.01 * cost
tnow = time.time()
if tnow > last_status_write_time + t_print_sec*1: # every now and then lets write a report
print 'Eval Cnn in epoch %d: %d/%d sample done in %.3fs. Cost now is %.3f Pplx is %.3f' % (it, it2, iters_eval, dt, \
smooth_train_cost,smooth_train_ppl2)
last_status_write_time = tnow
print 'Done training the descriminative model for now. Switching to Genereative model'
print 'Eval N/W in epoch %d: Cost now is %.3f Pplx is %.3f' % (it, smooth_train_cost,smooth_train_ppl2)
filename = 'advmodel_checkpoint_%s_%s_%s_%d_%.2f_EVOnly.p' % (params['dataset'], host, params['fappend'],it, smooth_train_ppl2)
dumpCheckpoint(filename, params, modelGen, modelEval, misc, it, val_ppl2)
# Disable Cnn dropout while training gen network
use_dropout_eval.set_value(0.)
for it2 in xrange(iters_gen):
t0 = time.time()
# fetch a batch of data
batch,_ = dp.sampPosNegSentSamps(params['eval_batch_size'] - params['rand_negs'])
real_inp_list, lenS = prepare_data(batch, misc['wordtoix'], maxlen=params['maxlen'], pos_samp=pos_samp, prep_for=params['eval_model'], rand_negs = params['rand_negs'])
#import pdb; pdb.set_trace()
# evaluate cost, gradient and perform parameter update
#if any([np.isnan(modelGen[m].get_value()).any() for m in modelGen]):
# print 'Somebodys NAN!!!'
# break;
#asd = f_gen_only(real_inp_list[2],real_inp_list[3])
#print it2,asd[-1].shape, real_inp_list[0].shape
#if asd[-1].shape[0] > real_inp_list[0].shape[0]:
# import pdb; pdb.set_trace()
cost = f_grad_comp_gen(*real_inp_list)
#print it2,cost
#if any([np.isnan(zg_gen[i].get_value()).any() for i in xrange(len(zg_gen))]):
# print 'Somebody zg is NAN!!!'
# break;
#if any([np.isnan(rg_gen[i].get_value()).any() for i in xrange(len(rg_gen))]) or any([(rg_gen[i].get_value()<0).any() for i in xrange(len(rg_gen))]):
# print 'Somebody rg is NAN!!!'
# break;
f_param_update_gen(params['learning_rate_gen'])
dt = time.time() - t0
# print training statistics
train_ppl2 = (np.e**(-cost)) #step_struct['stats']['ppl2']
smooth_train_ppl2 = 0.99 * smooth_train_ppl2 + 0.01 * train_ppl2 # smooth exponentially decaying moving average
if it2 == 0: smooth_train_ppl2 = train_ppl2
if it2 == 0: smooth_train_cost = cost
else: smooth_train_cost = 0.99 * smooth_train_cost + 0.01 * cost
tnow = time.time()
if tnow > last_status_write_time + t_print_sec*1: # every now and then lets write a report
print 'Gen Lstm in epoch %d: %d/%d sample done in %.3fs. Cost now is %.3f Pplx is %.3f' % (it, it2, iters_gen, dt, \
smooth_train_cost,smooth_train_ppl2)
last_status_write_time = tnow
print 'Done training the generative model for now. Switching to Genereative model. Final Stats are:'
print 'Gen Lstm in epoch %d: Cost now is %.3f Pplx is %.3f' % (it, smooth_train_cost,smooth_train_ppl2)
## perform perplexity evaluation on the validation set and save a model checkpoint if it's good
is_last_iter = (it+1) == max_iters
is_last_iter = 1
if (((it+1) % eval_period_in_iters) == 0 and it < max_iters - 5) or is_last_iter:
# Disable using dropout in validation
# use_dropout.set_value(0.)
# val_ppl2 = eval_split_theano('val', dp, model, params, misc,f_eval) # perform the evaluation on VAL set
#
# if it - params['lr_decay_st_epoch'] >= 0:
# params['learning_rate'] = params['learning_rate'] * params['lr_decay']
# params['lr_decay_st_epoch'] += 1
#
# print 'validation perplexity = %f, lr = %f' % (val_ppl2, params['learning_rate'])
# if params['sample_by_len'] == 1:
# print len_hist
val_ppl2 = smooth_train_ppl2
write_checkpoint_ppl_threshold = params['write_checkpoint_ppl_threshold']
if val_ppl2 < top_val_ppl2 or top_val_ppl2 < 0:
if val_ppl2 < write_checkpoint_ppl_threshold or write_checkpoint_ppl_threshold < 0:
# if we beat a previous record or if this is the first time
# AND we also beat the user-defined threshold or it doesnt exist
#top_val_ppl2 = val_ppl2
filename = 'advmodel_checkpoint_%s_%s_%s_%d_%.2f_GenDone.p' % (params['dataset'], host, params['fappend'],it, smooth_train_ppl2)
dumpCheckpoint(filename, params, modelGen, modelEval, misc, it, val_ppl2)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# global setup settings, and checkpoints
parser.add_argument('-d', '--dataset', dest='dataset', default='coco', help='dataset: flickr8k/flickr30k')
parser.add_argument('--fappend', dest='fappend', type=str, default='baseline', help='append this string to checkpoint filenames')
parser.add_argument('-o', '--checkpoint_output_directory', dest='checkpoint_output_directory', type=str, default='cv/', help='output directory to write checkpoints to')
parser.add_argument('--worker_status_output_directory', dest='worker_status_output_directory', type=str, default='status/', help='directory to write worker status JSON blobs to')
parser.add_argument('--write_checkpoint_ppl_threshold', dest='write_checkpoint_ppl_threshold', type=float, default=-1, help='ppl threshold above which we dont bother writing a checkpoint to save space')
parser.add_argument('--continue_training', dest='checkpoint_file_name', type=str, default='None', help='checkpoint file from which to resume training')
parser.add_argument('--use_pos_tag', dest='use_pos_tag', type=str, default='None', help='use_pos_tag')
# Some parameters about image features used
parser.add_argument('--feature_file', dest='feature_file', type=str, default='vgg_feats.mat', help='Which file should we use for read the CNN features')
parser.add_argument('--image_feat_size', dest='image_feat_size', type=int, default=4096, help='size of the input image features')
parser.add_argument('--data_file', dest='data_file', type=str, default='dataset.json', help='Which dataset file shpuld we use')
parser.add_argument('--mat_new_ver', dest='mat_new_ver', type=int, default=-1, help='If the .mat feature files are saved with new version (compressed) set this flag to 1')
parser.add_argument('--aux_inp_file', dest='aux_inp_file', type=str, default='None', help='Is there any auxillary inputs ? If yes indicate file here')
parser.add_argument('--swap_AuxFeat', dest='swap_aux', type=int, default=0, help='Feed image features through auxillary input!')
parser.add_argument('--advers_gen', dest='advers_gen', type=str, default=1, help='Should we use adverserial generator!')
parser.add_argument('--eval_model', dest='eval_model', type=str, default='cnn', help='which evaluator model to use type: cnn/lstm_eval')
# model parameters
parser.add_argument('--image_encoding_size', dest='image_encoding_size', type=int, default=512, help='size of the image encoding')
parser.add_argument('--word_encoding_size', dest='word_encoding_size', type=int, default=512, help='size of word encoding')
parser.add_argument('--hidden_size', dest='hidden_size', type=int, default=512, help='size of hidden layer in generator RNNs')
parser.add_argument('--hidden_depth', dest='hidden_depth', type=int, default=1, help='depth of hidden layer in generator RNNs')
parser.add_argument('--generator', dest='generator', type=str, default='lstm', help='generator to use')
parser.add_argument('-c', '--regc', dest='regc', type=float, default=1e-8, help='regularization strength')
parser.add_argument('--tanhC_version', dest='tanhC_version', type=int, default=0, help='use tanh version of LSTM?')
parser.add_argument('--beam_size', type=int, default=1, help='beam size in inference. 1 indicates greedy per-word max procedure. Good value is approx 20 or so, and more = better.')
parser.add_argument('--sent_encoding_size', dest='sent_encoding_size', type=int, default=300, help='size of sentence encoding layer on top of CNN')
parser.add_argument('--n_fmaps', dest='n_fmaps_psz', type=int, default=100, help='number of cnn feature maps per filter height')
parser.add_argument('--filter_hs', dest='filter_hs', metavar='N', type=int, nargs='+',default =[3,4,5], help='list fo filter heights to use in CNN')
parser.add_argument('--conv_non_linear', dest='conv_non_linear', type=str, default='relu', help='nonlinearity type: tanh/relu')
parser.add_argument('--max_sent_len', dest='maxlen', type=int, default=15, help='size of sentence encoding layer on top of CNN')
parser.add_argument('--sim_smooth_factor', dest='sim_smooth_factor', type=float, default=1.0, help='smoothing factor in softmax')
parser.add_argument('--sim_metric', dest='sim_metric', type=str, default='cosine', help='similarity metric to use to compare sent emb and image emb')
# Regarding word embedding sharing and such
parser.add_argument('--share_Wemb', dest='share_Wemb', type=int, default=0, help='If 1, share Wemb b/w eval and gen models')
parser.add_argument('--fix_Wemb', dest='fix_Wemb', type=int, default=0, help='If 1, gen model doesnt learn Wemb and keeps it fixed')
# optimization parameters
parser.add_argument('-m', '--max_epochs', dest='max_epochs', type=int, default=10, help='number of epochs to train for')
parser.add_argument('--solver', dest='solver', type=str, default='rmsprop', help='solver type: vanilla/adagrad/adadelta/rmsprop')
parser.add_argument('--decay_rate', dest='decay_rate', type=float, default=0.99, help='decay rate for adadelta/rmsprop')
parser.add_argument('--smooth_eps', dest='smooth_eps', type=float, default=1e-8, help='epsilon smoothing for rmsprop/adagrad/adadelta')
parser.add_argument('-lg', '--learning_rate_gen', dest='learning_rate_gen', type=float, default=4e-5, help='solver learning rate')
parser.add_argument('-ld', '--learning_rate_eval', dest='learning_rate_eval', type=float, default=1e-4, help='solver learning rate')
parser.add_argument('-b', '--batch_size', dest='batch_size', type=int, default=1, help='batch size')
parser.add_argument('-cb', '--eval_batch_size', dest='eval_batch_size', type=int, default=2, help='Batch size for eval descriminative network, 1 means it only gets a positive reference\
and a generated sample, n implies it also gets n-1 negative references ')
parser.add_argument('--rand_negs', dest='rand_negs', type=int, default=0, help='How many hard negetives obtianed by random permutations of positive to use to train eval n/w')
parser.add_argument('--sample_by_len', dest='sample_by_len', type=int, default=0, help='enable sampling by length of sentece to speed up training')
parser.add_argument('--grad_clip', dest='grad_clip', type=float, default=10.0, help='clip gradients (normalized by batch size)? elementwise. if positive, at what threshold?')
parser.add_argument('--drop_prob_encoder', dest='drop_prob_encoder', type=np.float32, default=0.5, help='what dropout to apply right after the encoder to an RNN/LSTM')
parser.add_argument('--drop_prob_decoder', dest='drop_prob_decoder', type=np.float32, default=0.5, help='what dropout to apply right before the decoder in an RNN/LSTM')
parser.add_argument('--drop_prob_eval', dest='drop_prob_eval', type=np.float32, default=0.5, help='what dropout to apply right before the decoder in an RNN/LSTM')
parser.add_argument('--drop_prob_aux', dest='drop_prob_aux', type=np.float32, default=0.5, help='what dropout to apply for the auxillary inputs to lstm')
parser.add_argument('--lr_decay', dest='lr_decay', type=float, default=1.0, help='decay factor for learning rate, applied every epoch')
parser.add_argument('--lr_decay_st_epoch', dest='lr_decay_st_epoch', type=float, default=100.0, help='from which epoch should the lr decay start')
# data preprocessing parameters
parser.add_argument('--word_count_threshold', dest='word_count_threshold', type=int, default=5, help='if a word occurs less than this number of times in training data, it is discarded')
# evaluation parameters
parser.add_argument('-p', '--eval_period', dest='eval_period', type=float, default=1.0, help='in units of epochs, how often do we evaluate on val set?')
parser.add_argument('--eval_max_images', dest='eval_max_images', type=int, default=-1, help='for efficiency we can use a smaller number of images to get validation error')
parser.add_argument('--softmax_smooth_factor', dest='softmax_smooth_factor', type=float, default=3.0, help='Is there any auxillary inputs ? If yes indicate file here')
parser.add_argument('--softmax_propogate', dest='softmax_propogate', type=int, default=1, help='Is there any auxillary inputs ? If yes indicate file here')
args = parser.parse_args()
params = vars(args) # convert to ordinary dict
if params['checkpoint_file_name'] != 'None':
checkpoint_init = pickle.load(open(params['checkpoint_file_name'], 'rb'))
model_init_from = checkpoint_init['model']
rg_init = checkpoint_init.get('rgrads',[])
#TODO: GET RID OF THEEEESSSEEEEEE !!!!!!!!!!!!!!!!
checkpoint_init['params'].pop('fappend')
for k in checkpoint_init['params']:
params[k] = checkpoint_init['params'][k]
params['batch_size'] = 1
params['eval_batch_size'] = 4
params['max_epochs'] = 1
params['decay_rate'] = 0.99
params['grad_clip'] = 10.0
params['write_checkpoint_ppl_threshold'] = -1
params['checkpoint_output_directory'] = 'cvCoco/advers'
if params['aux_inp_file'] != 'None':
params['en_aux_inp'] = 1
else:
params['en_aux_inp'] = 0
params['eval_batch_size'] += params['rand_negs']
if params['use_pos_tag'] != 'None':
sentTagMap = pickle.load(open(params['use_pos_tag'],'r'))
print 'parsed parameters:'
print json.dumps(params, indent = 2)
config.mode = 'FAST_RUN'
config.allow_gc = False
#config.exception_verbosity = 'high'
#main(params)