-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnes.R
527 lines (445 loc) · 18 KB
/
nes.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
setwd("/nfs/home/A/akaufman/Desktop/shared_space/cong_rec/NES")
#setwd("D://Documents//Research//Imputation")
#######################################################################
############# Generic Modeling Functions #############################
#######################################################################
#Vars to impute in round 1
# ident_whiteid, ident_blackid
# budget_rdefctax, dhs_torture
# paprofile_aarp, discrim_gays,
# prevote_regparty (unordered), gend_gendobs (good test case)
## Another task: find set of vars to use to impute
## Use L1, and every single variable: "bet on sparsity"; but if dense, use L2
# Update in blocks or update individually? Let's assume individual, and test it later
# Maybe start with gender so that I don't have to do any fake missingness stuff
b_ordered_logit = function(varname){
out = gbm(varname~., family="multinomial", data = nes)
}
b_cat = function(varname){
out = gbm(varname~., family="bernoulli", data = nes)
}
digits_to_dummies = function(x){
s = as.character(x)
if(nchar(s)==1){
s = paste("0", s, sep="")
}
fd = substr(s, start=1, stop=1)
ld = substr(s, start=2, stop=2)
if(s=="100"){
fd = "10"
ld = "0"
}
fds = as.numeric(fd == as.character(0:10))
lds = as.numeric(ld == as.character(0:10))
out = c(fds, lds)
}
dummies = function(var){
z = lapply(var, digits_to_dummies)
out = do.call(rbind, z)
}
b_ft = function(varname){
dum = dummies(nes[,"varname"])
temp = cbind(nes, dum)
#now run penalized least squares?
#this will be weird
## Maybe bin the feeling thermometer first?
## Maybe fit a model for the first digit, then the second digit using the first
## Both 10-cat ordered logit
}
#######################################################################
############# Preprocessing ##########################################
#######################################################################
### First, subset out the columns we don't want
clean_nes = function(nes){
start = 13:ncol(nes)
nes = nes[,start]
c = sapply(1:ncol(nes), FUN=function(x) class(nes[,x]))
nes = nes[,c!="character"]
l = sapply(1:ncol(nes), FUN=function(x) length(levels(nes[,x])))
nes = nes[,l!=1]
nes = nes[,!grepl("randord", colnames(nes))]
u = sapply(1:ncol(nes), FUN=function(x) length(unique(nes[,x])))
nes = nes[,u!=1]
nes = nes[,-1535]
}
### Next, go through the remaining columns and clean them up so that they can go into a prediction function.
recode_values = function(ind){
vec = nes[,ind]
ls = levels(vec)
levels(vec)[levels(vec)=='-1. Inapplicable'] <- "NA"
levels(vec)[levels(vec)=='-1. Inap, no Democratic gubernatorial candidate; no governor race in state'] <- "NA"
levels(vec)[levels(vec)=="-1. Inap, no independent/3rd party/other gubernatorial candidate; no governor race in state"] <- "NA"
levels(vec)[levels(vec)=="-1. Inap, Senate race in state"] <- "NA"
levels(vec)[levels(vec)=="-1. Inap, no independent/3rd party/other House candidate; district not identified (Web only)"] <- "NA"
levels(vec)[levels(vec)=="-1. Inapplicable (same date as du module or pre IWR obs not completed)"] <- "NA"
levels(vec)[levels(vec)=="-1. Inap, religion group not determinable at preload"] <- "NA"
levels(vec)[levels(vec)=="-1. Inap, R did not vote or DK/RF if voted; voted but not (or DK/RF if) for governor; no gov race in state of vote"] <- "NA"
levels(vec)[levels(vec)=="-1. Inap, R did not vote or DK/RF if voted; voted but not (or DK/RF if) for us Senate; no us Sen race in state of vote"] <- "NA"
levels(vec)[levels(vec)=='-1'] <- "NA"
levels(vec)[levels(vec)=='-2'] <- "NA"
levels(vec)[levels(vec)=='-2. Missing'] <- "NA"
levels(vec)[levels(vec)=="-2. Haven't thought much about this"] <- "NA"
levels(vec)[levels(vec)=="-2. Missing, field left blank"] <- "NA"
levels(vec)[levels(vec)=="-2. Missing, other not codeable to 1-5"] <- "NA"
levels(vec)[levels(vec)=="-2. Missing; R repeated existing race mention in other specify for race or other specify recoded to existing race"] <- "NA"
levels(vec)[levels(vec)=="-2. Missing; R gave Native American/Alaskan identification in text of other specify for race"] <- "NA"
levels(vec)[levels(vec)=="-2. Missing; R gave White identification in text of other specify for race"] <- "NA"
levels(vec)[levels(vec)=="-2. Missing; IWR mistakenly entered '2' in place of DK code for total income" ] <- "NA"
levels(vec)[levels(vec)=="-2. Text responses available in separate file"] <- "NA"
levels(vec)[levels(vec)=="-2. Missing; R gave Black identification in text of other specify for race" ] <- "NA"
levels(vec)[levels(vec)=='-2. Missing: R entered DK/RF for different address'] <- "NA"
levels(vec)[levels(vec)=='-2. Missing; available in forthcoming release'] <- "NA"
levels(vec)[levels(vec)=='-2. Available in future release'] <- "NA"
levels(vec)[levels(vec)=='-2. State of registration asked, not recorded'] <- "NA"
levels(vec)[levels(vec)=='-3. Restricted Access'] <- "NA"
levels(vec)[levels(vec)=="-3. Restricted access"] <- "NA"
levels(vec)[levels(vec)=='-3'] <- "NA"
levels(vec)[levels(vec)=='-4'] <- "NA"
levels(vec)[levels(vec)=="-4. Error; FTF: R said preferred Senate but no Sen race in reg state (not recorded correctly or error, no ballot card)"] <- "NA"
levels(vec)[levels(vec)=='-4. Error; FTF: pre reg in same county as residence but no ballot card use'] <- "NA"
levels(vec)[levels(vec)=='-4. Error'] <- "NA"
levels(vec)[levels(vec)=='-4. Error- R said voted for Senate but no Sen race in reg state (not recorded correctly or error, no ballot card)'] <- "NA"
levels(vec)[levels(vec)=='-4. Error- R said preferred Senate but no Sen race in reg state (not recorded correctly or error, no ballot card)'] <- "NA"
levels(vec)[levels(vec)=='-4. Error- R said voted for governor but no gov race in reg state (not recorded correctly or error, no ballot card)'] <- "NA"
levels(vec)[levels(vec)=='-4. Error- R said preferred governor but no gov race in reg state (not recorded correctly or error, no ballot card)'] <- "NA"
levels(vec)[levels(vec)=='-6. Not asked, unit nonresponse (no post-election interview)'] <- "NA"
levels(vec)[levels(vec)=='-6. Not asked, unit nonresponse'] <- "NA"
levels(vec)[levels(vec)=='-6. Unit nonresponse (no post-election interview)'] <- "NA"
levels(vec)[levels(vec)=='-6. Inapplicable'] <- "NA"
levels(vec)[levels(vec)=='-7. Deleted due to partial (post-election) interview'] <- "NA"
levels(vec)[levels(vec)== '-8. Don\'t know'] <- "NA"
levels(vec)[levels(vec)== '-8. Don\'t now'] <- "NA"
levels(vec)[levels(vec)=='-9. Refused'] <- "NA"
return(vec)
}
recode_values_numeric = function(ind){
vec = nes[,ind]
vec[vec==-1] = NA
vec[vec==-2] = NA
vec[vec==-3] = NA
vec[vec==-4] = NA
vec[vec==-5] = NA
vec[vec==-6] = NA
vec[vec==-7] = NA
vec[vec==-8] = NA
vec[vec==-9] = NA
return(vec)
}
recode_factor = function(nes){
nes2 = nes
for(i in 1:ncol(nes2)){
nes2[,i] = recode_values(i)
}
return(nes2)
}
recode_numeric = function(nes){
nes2 = nes
for(i in 1:ncol(nes2)){
nes2[,i] = recode_values_numeric(i)
}
return(nes2)
}
trim_na_cols = function(nes){
idx = c()
for(i in 1:ncol(nes)){
if(all(nes[,i]=="NA")){
idx = c(idx, i)
}
}
sd = setdiff(1:ncol(nes), idx)
nes2 = nes[,sd]
return(nes2)
}
trim_singular_cols = function(nes){
idx = c()
for(i in 1:ncol(nes)){
if(class(nes[,i])=="factor"){
us = unique(nes[,i])
observed = sum(us != "NA")
if(observed==1){
idx = c(idx, i)
}
}
}
sd = setdiff(1:ncol(nes), idx)
nes2 = nes[,sd]
return(nes2)
}
trim_rand_cols = function(nes){
idx = c()
for(i in 1:ncol(nes)){
if(grepl("rand", colnames(nes)[i])){
idx = c(idx, i)
}
}
sd = setdiff(1:ncol(nes), idx)
nes2 = nes[,sd]
return(nes2)
}
## One function to store iterates of all the missing entries, so check for convergence
init_iterates = function(nes){
na.values = list()
for(i in 1:ncol(nes)){
temp1 = which(nes[,i]=="NA")
temp2 = which(is.na(nes[,i]))
na.values[[i]] = sort(c(temp1, temp2))
}
return(na.values)
}
## First iterate: mean/mode for each thing
Mode <- function(x) {
ux <- unique(x)
ux[which.max(tabulate(match(x, ux)))]
}
modeval = function(ind){
c = class(nes[,ind])
# here is where I figure out whether to take the mean, mode, etc
modes = Mode(nes[,ind])
}
warm_start = function(nes){
mode.val = c()
for(i in 1:ncol(nes)){
mode.val[i] = Mode(nes[,i])
if(is.na(mode.val[i])){
mode.val[i] = names(sort(table(nes[,i]), decreasing=T)[2])
}
}
return(mode.val)
}
warm_start_wrap = function(nes, iterates){
nes2 = nes
modes = warm_start(nes2)
inputed_values = c()
#now go through every missing value and input the relevant mode
for(i in 1:ncol(nes2)){
#for(i in 1000:1200){
if(class(nes[,i])=="factor"){
levs = levels(nes2[,i])
m = levs[as.numeric(modes[i])]
if(m=="NA"){
m=levs[as.numeric(modes[i])+1]
}
#print(m)
inputed_values[i] = m
nes2[iterates[[i]],i] = m
}
if(class(nes[,i])=="numeric"){
#print(modes[i])
inputed_values[i] = as.numeric(as.character(modes[i]))
nes2[iterates[[i]],i] = as.numeric(as.character(modes[i]))
}
}
return(nes2)
}
#######################################################################
############# Generic Error Checking Functions #######################
#######################################################################
## One function to randomly induce missingness
induce_nas = function(iterates, nes, pr = 0.01){
induced_nas = list()
truth = list()
iters2 = iterates
for(i in 1:ncol(nes)){
idx = setdiff(1:nrow(nes), iterates[[i]])
tosamp = length(idx)*pr
induced_nas[[i]] = sort(sample(idx, size=tosamp))
truth[[i]] = nes[induced_nas[[i]], i]
print(length(induced_nas[[i]])==length(truth[[i]]))
iters2[[i]] = c(iters2[[i]], induced_nas[[i]])
}
out = list(iters2, induced_nas, truth)
return(out)
}
## One function to check the MSE
check_mse = function(iterates){
subset = iterates[!is.na(iterates$truth),]
se = (iterates$truth - iterates[,ncol(iterates)])^2
mse = mean(se)
print(mse)
}
## Check for convergence
check_conv = function(iterates){
# this function normalizes all variables 0-1, then measures MSE
}
## MICE comparison
require(mice)
check_mice = function(nes2, iterates, indices, truth, subset=NULL){
nes3 = nes2
for(i in 1:ncol(nes3)){
nes3[iterates[[i]],i] = NA
}
if(!is.null(subset)){
nes3 = nes3[,subset]
}
nes_mice = mice(nes3, MaxNWts = 20000)
mice_guess = list()
correct = 0
imp = complete(nes_mice)
for(i in 2:ncol(nes3)){
mice_guess[[i]] = imp[indices[[i]],i]
correct = correct + sum(unlist(mice_guess[[i]])==unlist(truth[i]))
}
return(correct)
}
#######################################################################
############# Iterating Training Functions ###########################
#######################################################################
# try collapsing this function?
onevar = function(varID, nes, nes2){ #be careful here: the training set is from nes2, but the index is from nes1
var = nes[,varID]
varname = colnames(nes)[varID]
c = class(var)
print(varID)
rows_missing = sort(iterates[[varID]])
rows_present = setdiff(1:nrow(nes), rows_missing)
if(length(iterates[[i]])!=0){
if(c=="numeric"){
train = nes2[rows_present, ]
test = nes2[rows_missing,]
if(nrow(train)==1){ # not much we can do about that...
prediction = var
} else if(nrow(train)<= 51){
nm = floor(nrow(train)*.5) - 1
fit = gbm.fit(y= var[rows_present], x = train[,-varID], distribution = "gaussian",
bag.fraction=2, n.minobsinnode = nm, keep.data=F)
prediction = predict(fit, test, n.trees=100, type="response")
prediction = as.numeric(prediction)
} else if(nrow(train) > 51){
fit = gbm.fit(y= var[rows_present], x = train[,-varID], distribution = "gaussian", keep.data=F)
prediction = predict(fit, test, n.trees=100, type="response")
if(!is.null(nrow(prediction))|length(dim(prediction))==3){
prediction = sapply(1:nrow(prediction), FUN=function(x) which(prediction[x,,]==max(prediction[x,,])))
}
prediction = as.numeric(unlist(prediction))
}
}
if(c=="factor"){
train = nes2[rows_present, ]
test = nes2[rows_missing,]
if(nrow(train)==1){
prediction = var
} else if(nrow(train)<= 51){
nm = floor(nrow(train)*.5) - 1
fit = gbm.fit(y= var[rows_present], x = train[,-varID], distribution = "multinomial",
bag.fraction=2, n.minobsinnode = nm, keep.data=F)
prediction = predict(fit, test, n.trees=100, type="response")
prediction = as.factor(prediction)
} else if(nrow(train)> 51){
fit = gbm.fit(y= var[rows_present], x = train[,-varID], distribution = "multinomial", keep.data=F)
prediction = predict(fit, test, n.trees=100, type="response")
if(!is.null(nrow(prediction))|length(dim(prediction))==3){
prediction = sapply(1:nrow(prediction), FUN=function(x) which(prediction[x,,]==max(prediction[x,,])))
}
prediction = as.factor(unlist(prediction))
levels(prediction) = levels(factor(nes2[,varID]))
}
}
} else if(length(iterates[[i]])==0){
prediction = c()
}
return(prediction)
}
#One function to loop over the set of variables
one_iteration = function(nes, nes2){
prediction = lapply(1:(ncol(nes)-10), FUN=function(x) onevar(x, nes, nes2))
nes3 = nes #storing a temp dataframe
correct = 0
for(i in 1:(ncol(nes)-10)){
nes3[iterates[[i]],i] <- prediction[[i]]
#correct = correct + sum(prediction[[i]][indices[[i]]]==truth[[i]]) ## note: doesn't quite work yet
}
#print accuracy here
#print(paste("Accuracy: ", correct))
return(nes3)
}
#One function to iterate: print MSE?
impute_nes = function(nes, iterates, tol = 100, false.missingness=T){
conv = 10000
while(conv > tol){
newpred = one_iteration(nes, na.codes)
iterates[, (ncol(iterates)+1)] <<- newpred
conv = check_conv(iterates)
}
# have a thing which prints accuracy
return(iterates)
}
## Plug the new values into the NES
input_imputed_vals = function(iterates, nes){
#here's where I loop through the rows of iterates and plug the values into the nes
return(final_nes)
}
#######################################################################
############# Workflow ###############################################
#######################################################################
#setwd("D://Documents//Research//Imputation")
library(foreign)
library(gbm)
library(glmnet)
library(car)
#nes = read.dta("anes_timeseries_2012_stata12.dta")
load("nes.RData")
nes = clean_nes(nes)
nes = recode_factor(nes) # recodes miscellaneous error values to NA
nes = recode_numeric(nes)
nes = trim_na_cols(nes) # delete variables which are now all NAs
nes = trim_singular_cols(nes)
iterates = init_iterates(nes) # collects the locations of all the missing values
nes2 = warm_start_wrap(nes, iterates) # initializes missing values at column mode (or second column mode if mode is NA)
temp = induce_nas(iterates, nes, 0.001)
iterates = temp[[1]] ### Adds false missingness for testing purposes and accuracy measurement
indices = temp[[2]]
truth = temp[[3]]
rm(temp)
#good = list()
#for(i in 1:ncol(nes)){
# good[[i]] = length(indices[[i]])==length(truth[[i]])
#}
#load("current.RData")
#start = Sys.time()
#test = one_iteration(nes, nes2)
#time_taken = Sys.time() - start
test = check_mice(nes2, iterates, indices, truth, subset=1:50)
test2 = one_iteration(nes[,1:50], nes2[,1:50])
missing.vals = impute_nes(nes2, iterates) # Runs the bulk of the imputation; probably will have to turn some loops to applys
final = input_imputed_vals(iterates, nes)
mse = check_accuracy(missing.vals) # Mahalanobis?
#Also in clude the part where I run MICE and compare accuracy? Maybe for each variable one by one?
#######################################################################
############# Testing ###############################################
#######################################################################
## Mahalanobis distance instead?
## Compare to MICE?
#######################################################################
############# FT ######################################################
#######################################################################
ft = nes$ft_rpc
ft = ft[ft!=-2 & ft!=-8 & ft!=-9]
hist(ft, breaks=0:100, main="Distribution of Feeling Thermometer Scores")
ld = ft %% 10
fd = round(ft)
par(mfrow=c(2,2))
hist(ft, breaks=0:100, main="Distribution of Feeling Thermometer Scores")
hist(ld, main="Distribution of Last Digits")
hist(fd, main="Distribution of First Digits")
#what if I have a latent preference and then a dummy variable for each first and last digit?
latent = sapply(ft, FUN=function(x) rnorm(1, x, 5))
latent[latent <= 0] = 0
latent[latent >= 100] = 100
## Derive empirical penalties for FT scores
### Aggregate all FT values
ft = c(nes$ft_rpc, nes$ft_dpc, nes$ft_dvpc, nes$ft_rvpc, nes$ft_hclinton, nes$ft_gwb, nes$ft_dem, nes$ft_rep,
nes$ftpo_dpcsp, nes$ftpo_rpcsp, nes$ftpo_hdc, nes$ftpo_hrc, nes$ftpo_sdc, nes$ftpo_src,
nes$ftpo_snsr, nes$ftpo_senjr, nes$ftpo_roberts, nes$ftgr_xfund, nes$ftgr_catholics,
nes$ftgr_feminists, nes$ftgr_fedgov, nes$ftgr_liberals,nes$ftgr_middle, nes$ftgr_unions,
nes$ftgr_poor, nes$ftgr_military, nes$ftgr_bigbus, nes$ftgr_welfare, nes$ftgr_cons, nes$ftgr_working,
nes$ftgr_ussc, nes$ftgr_gay, nes$ftgr_congress, nes$ftgr_rich, nes$ftgr_muslims, nes$ftgr_xian, nes$ftgr_atheists,
nes$ftgr_mormons, nes$ftgr_tea, nes$ftcasi_asian, nes$ftcasi_hisp, nes$ftcasi_black,
nes$ftcasi_illegal, nes$ftcasi_white)
ft = ft[ft>=0]
hist(ft, breaks=0:100, main="Distribution of Feeling Thermometer Scores")
ld = ft %% 10
fd = (ft - (ft %% 10))/10
ldt = c(table(ld)/length(ld))
ld_penalties = (ldt^-1)/sum(ldt^-1)
fdt = c(table(fd)/length(fd))
fd_penalties = (fdt^-1)/sum(fdt^-1)