forked from aravindMahadevan/trajectory_prediction_INFER
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_data.py
693 lines (539 loc) · 29.7 KB
/
generate_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
from nuscenes.nuscenes import NuScenes
import matplotlib.pyplot as plt
import numpy as np
import copy
import PIL
import os
from skimage import color
from nuscenes.utils.geometry_utils import view_points, box_in_image, BoxVisibility, transform_matrix
from nuscenes.utils.data_classes import LidarPointCloud
from pyquaternion import Quaternion
import cv2
from nuscenes.eval.common.utils import quaternion_yaw
from nuscenes.prediction import PredictHelper
from nuscenes.prediction.input_representation.utils import get_crops, get_rotation_matrix, convert_to_pixel_coords
#nusc = NuScenes(version='v1.0-mini', dataroot='data/sets/nuscenes', verbose=True)
nusc = NuScenes(version='v1.0-trainval', dataroot='full_data/sets/nuscenes', verbose=True)
import os.path as osp
palette = {}
palette['Bird'] = [165, 42, 42]
palette['Ground Animal'] = [0, 192, 0]
palette['Curb'] = [196, 196, 196]
palette['Fence'] = [190, 153, 153]
palette['Guard Rail'] = [180, 165, 180]
palette['Barrier'] = [90, 120, 150]
palette['Wall'] = [102, 102, 156]
palette['Bile Lane'] = [128, 64, 255]
palette['Crosswalk - Plain'] = [140, 140, 200]
palette['Curb Cut'] = [170, 170, 170]
palette['Parking'] = [250, 170, 160]
palette['Pedestrian Area'] = [96, 96, 96]
palette['Rail Track'] = [230, 150, 140]
palette['Road'] = [128, 64, 128]
palette['Service Lane'] = [110, 110, 110]
palette['Sidewalk'] = [244, 35, 232]
palette['Bridge'] = [150, 100, 100]
palette['Building'] = [70, 70, 70]
palette['Tunnel'] = [150, 120, 90]
palette['Person'] = [220, 20, 60]
palette['Bicyclist'] = [255, 0, 0]
palette['Motorcyclist'] = [255, 0, 100]
palette['Other Rider'] = [255, 0, 200]
palette['Lane Marking - Crosswalk'] = [200, 128, 128]
palette['Lane Marking - General'] = [255, 255, 255]
palette['Mountain'] = [64, 170, 64]
palette['Sand'] = [230, 160, 50]
palette['Sky'] = [70, 130, 180]
palette['Snow'] = [190, 255, 255]
palette['Terrain'] = [152, 251, 152]
palette['Vegetation'] = [107, 142, 35]
palette['Water'] = [0, 170, 30]
palette['Banner'] = [255, 255, 128]
palette['Bench'] = [250, 0, 30]
palette['Bike Rack'] = [100, 140, 180]
palette['Billboard'] = [220, 220, 220]
palette['Catch Basin'] = [220, 128, 128]
palette['CCTV Camera'] = [222, 40, 40]
palette['Fire Hydrant'] = [100, 170, 30]
palette['Junction Box'] = [40, 40, 40]
palette['Mailbox'] = [33, 33, 33]
palette['Manhole'] = [100, 128, 160]
palette['Phone Booth'] = [142, 0, 0]
palette['Pothole'] = [70, 100, 150]
palette['Street Light'] = [210, 170, 100]
palette['Pole'] = [153, 153, 153]
palette['Traffic Sign Frame'] = [128, 128, 128]
palette['Utility Pole'] = [0, 0, 80]
palette['Traffic Light'] = [250, 170, 30]
palette['Traffic Sign (Back)'] = [192, 192, 192]
palette['Traffic Sign (Front)'] = [220, 220, 0]
palette['Trash Can'] = [140, 140, 20]
palette['Bicycle'] = [119, 11, 32]
palette['Boat'] = [150, 0, 255]
palette['Bus'] = [0, 60, 100]
palette['Car'] = [0, 0, 142]
palette['Caravan'] = [0, 0, 90]
palette['Motorcycle'] = [0, 0, 230]
palette['On Rails'] = [0, 80, 100]
palette['Other Vehicle'] = [128, 64, 64]
palette['Trailer'] = [0, 0, 110]
palette['Truck'] = [0, 0, 70]
palette['Wheeled Slow'] = [0, 0, 192]
palette['Car Mount'] = [32, 32, 32]
palette['Ego Vehicle'] = [120, 10, 10]
for k in palette.keys():
palette[k].append(255)
pixel_to_classidx = {}
class_to_idx = {}
count = 0
for k in palette:
pixel_to_classidx[tuple(palette[k])] = (k, count)
class_to_idx[k] = count
count+=1
idx_to_class = {class_to_idx[k] : k for k in class_to_idx}
def get_seg(og_seg, plot_images=False, colortype='rgb'):
'''
og_seg - image from which intermediate representations will be extracted from (array)
plot_images - plots images if True, does not plot if False
colortype - 'binary': plots 1 or 0 (used for occupancy grid), 'grayscale': plots in grayscale for lidar mapping,
'rgb' or any other string: plots in original palette colors
returns ret - list of intermediate representations(road, lane, and obstacle in that order so far)
'''
if(plot_images):
plt.figure()
plt.imshow(og_seg)
ret = []
#road segmentation
inter_seg_road = copy.deepcopy(og_seg)
inter_seg_road[(og_seg != palette['Road']).any(axis=2)] = [0,0,0,255]
ret.append(inter_seg_road)
#lane segmentation
inter_seg_lane = copy.deepcopy(og_seg)
crosswalk = (og_seg != palette['Lane Marking - Crosswalk']).any(axis=2)
general = (og_seg != palette['Lane Marking - General']).any(axis=2)
inter_seg_lane[np.logical_and(crosswalk, general)] = [0,0,0,255]
ret.append(inter_seg_lane)
#obstacle segmentation (did not include Curb Cut as obstacle but did include Curb)
inter_seg_obstacle = copy.deepcopy(og_seg)
building = (og_seg != palette['Building']).any(axis=2)
curb = (og_seg != palette['Curb']).any(axis=2)
vegetation = (og_seg != palette['Vegetation']).any(axis=2)
inter_seg_obstacle[np.logical_and(np.logical_and(building,curb),vegetation)] = [0,0,0,255]
ret.append(inter_seg_obstacle)
if(colortype == 'grayscale'):
for i in range(0, len(ret)):
temp = color.rgb2gray(ret[i])
ret[i] = temp
elif(colortype == 'binary'):
for i in range(0, len(ret)):
temp = color.rgb2gray(ret[i])
temp[temp > 0] = 1
ret[i] = temp
if(plot_images):
for i in ret:
plt.figure()
if(colortype =='grayscale'):
plt.imshow(i, cmap='gray')
else:
plt.imshow(i)
return ret
def get_semantic_class(points, cam_img):
num_points = points.shape[1]
class_vec = [-1] * num_points
num_points_classified = 0
for i in range(num_points):
current_point = np.round(points[:,i][:2])
r = int(current_point[0])
c = int(current_point[1])
object_type, class_id = pixel_to_classidx[(tuple(cam_img[c,r]))]
class_vec[i] = class_id
num_points_classified+=1
# print(str(num_points_classified) + '/' + str(len(class_vec)))
return class_vec
def project_points_to_image(current_pc, pointsensor, cam):
pc = copy.deepcopy(current_pc)
# Points live in the point sensor frame. So they need to be transformed via global to the image plane.
# First step: transform the point-cloud to the ego vehicle frame for the timestamp of the sweep.
cs_record = nusc.get('calibrated_sensor', pointsensor['calibrated_sensor_token'])
pc.rotate(Quaternion(cs_record['rotation']).rotation_matrix)
pc.translate(np.array(cs_record['translation']))
# import pdb; pdb.set_trace()
# Second step: transform to the global frame.
poserecord = nusc.get('ego_pose', pointsensor['ego_pose_token'])
pc.rotate(Quaternion(poserecord['rotation']).rotation_matrix)
pc.translate(np.array(poserecord['translation']))
t2 = transform_matrix(translation=poserecord['translation'],rotation=Quaternion(poserecord['rotation']),inverse=True)
# import pdb; pdb.set_trace()
global_frame_pc = copy.deepcopy(pc)
# Third step: transform into the ego vehicle frame for the timestamp of the image.
poserecord = nusc.get('ego_pose', cam['ego_pose_token'])
pc.translate(-np.array(poserecord['translation']))
pc.rotate(Quaternion(poserecord['rotation']).rotation_matrix.T)
# Fourth step: transform into the camera.
cs_record = nusc.get('calibrated_sensor', cam['calibrated_sensor_token'])
pc.translate(-np.array(cs_record['translation']))
pc.rotate(Quaternion(cs_record['rotation']).rotation_matrix.T)
return pc, global_frame_pc
def mask_img_points(points, depths, im, min_dist=1.0):
mask = np.ones(depths.shape[0], dtype=bool)
mask = np.logical_and(mask, depths > min_dist)
mask = np.logical_and(mask, points[0, :] > 1)
mask = np.logical_and(mask, points[0, :] < im.size[0] - 1)
mask = np.logical_and(mask, points[1, :] > 1)
mask = np.logical_and(mask, points[1, :] < im.size[1] - 1)
return mask
import math
def print_stats(s_c_p):
objects_found_front = {}
for point in s_c_p[0]:
if idx_to_class[point] not in objects_found_front:
objects_found_front[idx_to_class[point]] = 1
else:
objects_found_front[idx_to_class[point]] += 1
objects_found_front_left = {}
for point in s_c_p[1]:
if idx_to_class[point] not in objects_found_front_left:
objects_found_front_left[idx_to_class[point]] = 1
else:
objects_found_front_left[idx_to_class[point]] += 1
objects_found_front_right = {}
for point in s_c_p[2]:
if idx_to_class[point] not in objects_found_front_right:
objects_found_front_right[idx_to_class[point]] = 1
else:
objects_found_front_right[idx_to_class[point]] += 1
objects_found_back = {}
for point in s_c_p[3]:
if idx_to_class[point] not in objects_found_back:
objects_found_back[idx_to_class[point]] = 1
else:
objects_found_back[idx_to_class[point]] += 1
print(" Found in front camera")
for class_point in objects_found_front:
print("{} found {} times in front camera".format(class_point, objects_found_front[class_point]))
print(" Found in front left camera")
for class_point in objects_found_front_left:
print("{} found {} times in front camera".format(class_point, objects_found_front_left[class_point]))
print(" Found in front right camera")
for class_point in objects_found_front_right:
print("{} found {} times in front camera".format(class_point, objects_found_front_right[class_point]))
print(" Found in back camera")
for class_point in objects_found_back:
print("{} found {} times in front camera".format(class_point, objects_found_back[class_point]))
from typing import Any, Dict, List, Tuple, Callable
import numpy as np
History = Dict[str, List[Dict[str, Any]]]
def reverse_history(history: History) -> History:
"""
Reverse history so that most distant observations are first.
We do this because we want to draw more recent bounding boxes on top of older ones.
:param history: result of get_past_for_sample PredictHelper method.
:return: History with the values reversed.
"""
return {token: anns[::-1] for token, anns in history.items()}
def add_present_time_to_history(current_time: List[Dict[str, Any]],
history: History) -> History:
"""
Adds the sample annotation records from the current time to the
history object.
:param current_time: List of sample annotation records from the
current time. Result of get_annotations_for_sample method of
PredictHelper.
:param history: Result of get_past_for_sample method of PredictHelper.
:return: History with values from current_time appended.
"""
for annotation in current_time:
token = annotation['instance_token']
if token in history:
# We append because we've reversed the history
history[token].append(annotation)
else:
history[token] = [annotation]
return history
def pixels_to_box_corners(row_pixel: int,
column_pixel: int,
length_in_pixels: float,
width_in_pixels: float,
yaw_in_radians: float) -> np.ndarray:
"""
Computes four corners of 2d bounding box for agent.
The coordinates of the box are in pixels.
:param row_pixel: Row pixel of the agent.
:param column_pixel: Column pixel of the agent.
:param length_in_pixels: Length of the agent.
:param width_in_pixels: Width of the agent.
:param yaw_in_radians: Yaw of the agent (global coordinates).
:return: numpy array representing the four corners of the agent.
"""
# cv2 has the convention where they flip rows and columns so it matches
# the convention of x and y on a coordinate plane
# Also, a positive angle is a clockwise rotation as opposed to counterclockwise
# so that is why we negate the rotation angle
coord_tuple = ((column_pixel, row_pixel), (length_in_pixels, width_in_pixels), -yaw_in_radians * 180 / np.pi)
box = cv2.boxPoints(coord_tuple)
return box
def get_track_box(annotation: Dict[str, Any],
center_coordinates: Tuple[float, float],
center_pixels: Tuple[float, float],
resolution: float = 0.1) -> np.ndarray:
"""
Get four corners of bounding box for agent in pixels.
:param annotation: The annotation record of the agent.
:param center_coordinates: (x, y) coordinates in global frame
of the center of the image.
:param center_pixels: (row_index, column_index) location of the center
of the image in pixel coordinates.
:param resolution: Resolution pixels/meter of the image.
"""
assert resolution > 0
location = annotation['translation'][:2]
yaw_in_radians = quaternion_yaw(Quaternion(annotation['rotation']))
#print('yaw_in_radians', yaw_in_radians)
row_pixel, column_pixel = convert_to_pixel_coords(location,
center_coordinates,
center_pixels, resolution)
#print('row_pixel, column_pixel', row_pixel, column_pixel)
#print('center_pixels', center_pixels)
width = annotation['size'][0] / resolution
length = annotation['size'][1] / resolution
# Width and length are switched here so that we can draw them along the x-axis as
# opposed to the y. This makes rotation easier.
return pixels_to_box_corners(row_pixel, column_pixel, length, width, yaw_in_radians)
def draw_other_vehicle_boxes(ref_ego_pose: Dict[str, Any],
center_agent_pixels: Tuple[float, float],
vehicle_history: History,
base_image: np.ndarray,
resolution: float = 0.1) -> None:
color = (1, 1, 1)
ref_loc_x, ref_loc_y = ref_ego_pose['translation'][:2]
for instance_token, annotations in vehicle_history.items():
num_points = len(annotations)
for i, annotation in enumerate(annotations):
box = get_track_box(annotation, (ref_loc_x, ref_loc_y), center_agent_pixels, resolution)
if 'object' in annotation['category_name']:
continue
cv2.fillPoly(base_image, pts=[np.int0(box)], color=color)
def get_intermediate_rep(BEV_points, mask, semantic_class_points, center_coordinates):
corresponding_BEV_points= BEV_points[:,mask]
num_points = corresponding_BEV_points.shape[1]
lane_rep = np.zeros((256,256))
road_rep = np.zeros((256,256))
obstacle_rep = np.zeros((256,256))
res = 0.5
for i in range(num_points):
row_pixel, column_pixel = convert_to_pixel_coords(corresponding_BEV_points[:,i][:2], \
center_coordinates, \
(128, 128), res)
if row_pixel < 0 or column_pixel < 0 or row_pixel >= 256 or column_pixel >= 256:
import pdb; pdb.set_trace()
semantic_class = semantic_class_points[i]
if semantic_class == class_to_idx['Road']:
road_rep[row_pixel][column_pixel] += 1
if semantic_class == class_to_idx['Lane Marking - General'] or semantic_class == class_to_idx['Lane Marking - Crosswalk']:
lane_rep[row_pixel][column_pixel] += 1
if semantic_class == class_to_idx['Building'] or semantic_class == class_to_idx['Curb'] or semantic_class == class_to_idx['Vegetation']:
obstacle_rep[row_pixel][column_pixel] += 1
return road_rep, lane_rep, obstacle_rep
past_seconds = 2
future_seconds = 4
helper = PredictHelper(nusc)
starting_scene = 0
for j in range(starting_scene, len(nusc.scene)//10):
#every scene
os.makedirs("nuScenes_project_dataset/scene_" + str(j))
print(j)
my_scene_token = nusc.scene[j]['token']
scene_rec = nusc.get('scene', my_scene_token)
#print(len(scene_rec))
current_token = scene_rec['first_sample_token']
current_seq = []
sequence_count = 0
for i in range(scene_rec['nbr_samples']):
#get current sample data
sample_rec = nusc.get('sample', current_token)
annotation_tokens = sample_rec['anns']
#get camera tokens
camera_token = sample_rec['data']['CAM_FRONT']
camera_token_FRONT_LEFT = sample_rec['data']['CAM_FRONT_LEFT']
camera_token_FRONT_RIGHT = sample_rec['data']['CAM_FRONT_RIGHT']
camera_token_BACK = sample_rec['data']['CAM_BACK']
pointsensor_token = sample_rec['data']['LIDAR_TOP']
pointsensor = nusc.get('sample_data', pointsensor_token)
#get camera info
cam = nusc.get('sample_data', camera_token)
cam_front_left = nusc.get('sample_data', camera_token_FRONT_LEFT)
cam_front_right = nusc.get('sample_data', camera_token_FRONT_RIGHT)
cam_back = nusc.get('sample_data', camera_token_BACK)
orig_pc, times = LidarPointCloud.from_file_multisweep(nusc, sample_rec, 'LIDAR_TOP', 'LIDAR_TOP', nsweeps=10)
#get ego vehicle pose
pose_record = nusc.get('ego_pose', pointsensor['ego_pose_token'])
#get point cloud in camera frame prior to putting inside image plane
pc, global_frame_pc = project_points_to_image(orig_pc, pointsensor, cam)
pc_front_left, _ = project_points_to_image(orig_pc, pointsensor, cam_front_left)
pc_front_right, _ = project_points_to_image(orig_pc, pointsensor, cam_front_right)
pc_back, _ = project_points_to_image(orig_pc, pointsensor, cam_back)
#get image representation of camera data
im = PIL.Image.open(osp.join(nusc.dataroot, cam['filename']))
im_fl = PIL.Image.open(osp.join(nusc.dataroot, cam_front_left['filename']))
im_fr = PIL.Image.open(osp.join(nusc.dataroot, cam_front_right['filename']))
im_b = PIL.Image.open(osp.join(nusc.dataroot, cam_back['filename']))
# Grab the depths (camera frame z axis points away from the camera).
depths = pc.points[2, :]
depths_front_left = pc_front_left.points[2,:]
depths_front_right = pc_front_right.points[2,:]
depths_back = pc_back.points[2,:]
# Take the actual picture (matrix multiplication with camera-matrix + renormalization).
cs_record = nusc.get('calibrated_sensor', cam['calibrated_sensor_token'])
cs_record_front_left = nusc.get('calibrated_sensor', cam_front_left['calibrated_sensor_token'])
cs_record_front_right = nusc.get('calibrated_sensor', cam_front_right['calibrated_sensor_token'])
cs_record_back = nusc.get('calibrated_sensor', cam_back['calibrated_sensor_token'])
#get matrix representation of camera image
cam_data_arr_front = plt.imread(osp.join(nusc.dataroot, cam['filename']))
cam_data_arr_front_left = plt.imread(osp.join(nusc.dataroot, cam_front_left['filename']))
cam_data_arr_front_right = plt.imread(osp.join(nusc.dataroot, cam_front_right['filename']))
cam_data_arr_back = plt.imread(osp.join(nusc.dataroot, cam_back['filename']))
#get point cloud data in the image plane across all cameras
points = view_points(pc.points[:3, :], np.array(cs_record['camera_intrinsic']), normalize=True)
points_front_left = view_points(pc_front_left.points[:3, :], np.array(cs_record_front_left['camera_intrinsic']), normalize=True)
points_front_right = view_points(pc_front_right.points[:3, :], np.array(cs_record_front_right['camera_intrinsic']), normalize=True)
points_back = view_points(pc_back.points[:3, :], np.array(cs_record_back['camera_intrinsic']), normalize=True)
#get points that are actually inside the image plane
mask_front = mask_img_points(points, depths, im)
mask_front_left = mask_img_points(points_front_left, depths_front_left, im_fl)
mask_front_right = mask_img_points(points_front_right, depths_front_right, im_fr)
mask_back = mask_img_points(points_back, depths_back, im_b)
# get points inside the image
valid_img_points_front = points[:, mask_front]
valid_img_points_front_left = points_front_left[:, mask_front_left]
valid_img_points_front_right = points_front_right[:, mask_front_right]
valid_img_points_back = points_back[:, mask_back]
#perform point painting and get class per associated valid lidar point
semantic_class_points_front = get_semantic_class(valid_img_points_front, cam_data_arr_front)
semantic_class_points_front_left = get_semantic_class(valid_img_points_front_left, cam_data_arr_front_left)
semantic_class_points_front_right = get_semantic_class(valid_img_points_front_right, cam_data_arr_front_right)
semantic_class_points_back = get_semantic_class(valid_img_points_back, cam_data_arr_back)
masks = [mask_front, mask_front_left, mask_front_right, mask_back]
semantic_class_points = [semantic_class_points_front,\
semantic_class_points_front_left,\
semantic_class_points_front_right,\
semantic_class_points_back]
images = [im, im_fl, im_fr, im_b]
current_seq.append((pc, global_frame_pc, pointsensor, pose_record, masks, semantic_class_points, images, current_token))
#create sequences
if len(current_seq) >= 13:
#every sequence
os.makedirs("nuScenes_project_dataset/scene_" + str(j) + "/sequence_" + str(sequence_count))
intermediate_reps = []
current_frame = i - 2*future_seconds
time_frame = current_seq[current_frame-2*past_seconds:-1]
needed_ego_pose = current_seq[current_frame][3]
res = 0.5
offset = 64
yaw = quaternion_yaw(Quaternion(needed_ego_pose['rotation']))
rotation_matrix = np.array([[np.cos(yaw), -np.sin(yaw)],[np.sin(yaw), np.cos(yaw)]]).T
ref_ego_x, ref_ego_y = needed_ego_pose['translation'][:2]
for pc_h, gpc_orig, ps_h, ep_h, m, s_c_p, ims, token in time_frame:
gpc_h = copy.deepcopy(gpc_orig)
#get target vehicle representation
location = ep_h['translation'][:2]
print(ref_ego_x == location[0] and ref_ego_y == location[1])
row_pixel, column_pixel = convert_to_pixel_coords(location, \
(ref_ego_x, ref_ego_y), \
(128, 128), res)
target_rep = np.zeros((256,256,3))
width_target = 1
length_target = 1
yaw_in_radians = quaternion_yaw(Quaternion(ep_h['rotation']))
box = pixels_to_box_corners(row_pixel, column_pixel, length_target, width_target, yaw_in_radians)
cv2.fillPoly(target_rep, pts=[np.int0(box)], color=1)
rotation_mat = get_rotation_matrix(target_rep.shape, yaw+np.pi/2)
target_rep = cv2.warpAffine(target_rep, rotation_mat, (target_rep.shape[1], target_rep.shape[0]))
row_crop, col_crop = get_crops(offset, offset, offset, offset, res,target_rep.shape[0])
target_rep = target_rep[row_crop, col_crop]
#only get location where car is at
target_rep[target_rep != 1] = 0
target_rep = cv2.GaussianBlur(target_rep[:,:,0], (5,5),0)
#get other vehicle representation
history = helper.get_past_for_sample(token,
0,
in_agent_frame=False,
just_xy=False)
history = reverse_history(history)
present_time = helper.get_annotations_for_sample(token)
history = add_present_time_to_history(present_time, history)
vehicle_rep = np.zeros((256, 256))
draw_other_vehicle_boxes(needed_ego_pose, (128,128),
history, vehicle_rep, resolution=res)
vehicle_rep = cv2.warpAffine(vehicle_rep, rotation_mat, vehicle_rep.shape)
row_crop, col_crop = get_crops(offset, offset, offset, offset, res,target_rep.shape[0])
vehicle_rep = vehicle_rep[row_crop, col_crop]
min_coor_x = ref_ego_x - offset
min_coor_y = ref_ego_y - offset
max_coor_x = ref_ego_x + offset
max_coor_y = ref_ego_y + offset
#ensures we don't get lidar points that are too far away
point_filter_1_x = gpc_h.points[0,:] > min_coor_x
point_filter_1_y = gpc_h.points[1,:] > min_coor_y
point_filter_1 = np.logical_and(point_filter_1_x, point_filter_1_y)
point_filter_2_x = gpc_h.points[0,:] < max_coor_x
point_filter_2_y = gpc_h.points[1,:] < max_coor_y
point_filter_2 = np.logical_and(point_filter_2_x, point_filter_2_y)
point_filter = np.logical_and(point_filter_1, point_filter_2)
m_f, m_f_l, m_f_r, m_b = m[0], m[1], m[2], m[3]
s_c_p_f, s_c_p_f_l, s_c_p_f_r, s_c_p_b = s_c_p[0], s_c_p[1], s_c_p[2], s_c_p[3]
all_colored = np.array([-1] * gpc_h.points.shape[1])
all_colored[m_f] = s_c_p[0]
all_colored[m_f_l] = s_c_p[1]
all_colored[m_f_r] = s_c_p[2]
all_colored[m_b] = s_c_p[3]
m_f_l, m_f_r = np.logical_and(point_filter, m_f_l),np.logical_and(point_filter, m_f_r)
m_f, m_b = np.logical_and(point_filter, m_f),np.logical_and(point_filter, m_b)
s_c_p_f = all_colored[m_f]
s_c_p_f_l = all_colored[m_f_l]
s_c_p_f_r = all_colored[m_f_r]
s_c_p_b = all_colored[m_b]
road_rep_fl, lane_rep_fl, obstacle_rep_fl = get_intermediate_rep(gpc_h.points, m_f_l, s_c_p_f_l, (ref_ego_x, ref_ego_y))
road_rep_fr, lane_rep_fr, obstacle_rep_fr = get_intermediate_rep(gpc_h.points, m_f_r, s_c_p_f_r, (ref_ego_x, ref_ego_y))
road_rep_f, lane_rep_f, obstacle_rep_f = get_intermediate_rep(gpc_h.points, m_f, s_c_p_f, (ref_ego_x, ref_ego_y))
road_rep_b, lane_rep_b, obstacle_rep_b = get_intermediate_rep(gpc_h.points, m_b, s_c_p_b, (ref_ego_x, ref_ego_y))
road_rep = road_rep_fl + road_rep_fr + road_rep_f + road_rep_b
lane_rep = lane_rep_fl + lane_rep_fr + lane_rep_f + lane_rep_b
obstacle_rep = obstacle_rep_fl + obstacle_rep_fr + obstacle_rep_f + obstacle_rep_b
#rotate image and perform the dilation for the road, lane, and obstacle representations
road_rep = cv2.warpAffine(road_rep, rotation_mat, road_rep.shape)
kernel = np.ones((5,5), np.uint8)
road_rep = cv2.dilate(road_rep,kernel,iterations = 1)
lane_rep = cv2.warpAffine(lane_rep, rotation_mat, lane_rep.shape)
kernel = np.ones((2,2), np.uint8)
lane_rep = cv2.dilate(lane_rep,kernel,iterations = 1)
obstacle_rep = cv2.warpAffine(obstacle_rep, rotation_mat, obstacle_rep.shape)
kernel = np.ones((5,5), np.uint8)
obstacle_rep = cv2.dilate(obstacle_rep,kernel,iterations = 1)
intermediate_reps.append([target_rep, lane_rep, obstacle_rep, road_rep, vehicle_rep])
frame_count = 0
for k,data in enumerate(intermediate_reps):
if k < len(intermediate_reps) - 1:
data.append(intermediate_reps[k+1][4])
else:
ego_pose_current = copy.deepcopy(current_seq[-1][3])
#generate target rep
target_rep = np.zeros((256,256,3))
width_target = 1
length_target = 1
yaw_in_radians = quaternion_yaw(Quaternion(ego_pose_current['rotation']))
box = pixels_to_box_corners(row_pixel, column_pixel, length_target, width_target, yaw_in_radians)
cv2.fillPoly(target_rep, pts=[np.int0(box)], color=1)
rotation_mat = get_rotation_matrix(target_rep.shape, yaw+np.pi/2)
target_rep = cv2.warpAffine(target_rep, rotation_mat, (target_rep.shape[1], target_rep.shape[0]))
row_crop, col_crop = get_crops(offset, offset, offset, offset, res,target_rep.shape[0])
target_rep = target_rep[row_crop, col_crop]
#only get location where car is at
target_rep[target_rep != 1] = 0
target_rep = cv2.GaussianBlur(target_rep[:,:,0], (5,5),0)
data.append(target_rep)
#every frame
np.save("nuScenes_project_dataset/scene_" + str(j) + "/sequence_" + str(sequence_count) + "/frame_" + str(frame_count), np.array(data))
print("Scene: " + str(j) + ", Sequence: " + str(sequence_count) + ", Frame: " + str(frame_count))
frame_count += 1
sequence_count += 1
current_token = sample_rec['next']