-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlearner.py
402 lines (383 loc) · 17.1 KB
/
learner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
'''
Primary module. Includes dataloader, trn/val/test functions. Reads
options from user and runs training.
'''
import os
import torch
import torch.nn.functional as F
import torch.nn as nn
from tqdm import trange
import sklearn.metrics
# from torchvision.models import resnet18
import aux
import config
from data_handler import DataLoader
# from aux import weightedBCE as lossFun
from model import MARL
from exp_models import RobustDenseNet
from analyze_performance import PredAnalyzer
# from unet import UNet
from resnet import resnet18
def predict_compute_loss(X, model, y_OH, class_wts, loss_wts, loss_list,
process, gamma, amp):
"""
Run prediction and return losses
Args:
X (torch.Tensor): data batch from data loader
model(torch.nn.Module): model being trained/predicted with
y_OH (torch.Tensor): one-hot encoded labels
Returns:
pred (torch.Tensor): soft predictions for given batch
loss (float): total loss for the batch
loss_list (dict): break up of losses
"""
focal_loss_fn = aux.FocalLoss(class_wts, gamma=gamma, reduction='sum')
if amp:
with torch.cuda.amp.autocast(enabled=False):
if process == 'trn':
pred, aux_pred, conicity = model.forward(X)
# pred, aux_pred = model.forward(X)
# pred = model.forward(X)
aux_pred = F.softmax(aux_pred, 1)
else:
pred, conicity = model.forward(X)
# pred = model.forward(X)
pred = F.softmax(pred.float(), 1)
main_focal_loss = focal_loss_fn(pred, y_OH)
if process == 'trn':
main_aux_loss = focal_loss_fn(aux_pred, y_OH)
loss = (loss_wts[0]*main_focal_loss +
loss_wts[1]*main_aux_loss)
loss_list['aux_focal_loss'] += main_aux_loss
# loss = (loss_wts[0]*main_focal_loss)
else:
loss = loss_wts[0]*main_focal_loss
loss_list['main_focal_loss'] += main_focal_loss
loss = loss + loss_wts[2]*torch.sum(conicity)
loss_list['conicity'] += torch.sum(conicity).item()
return pred, loss, loss_list
def run_model(data_handler, model, optimizer, class_wts, loss_wts, gamma, amp,
save_name):
'''
Loads data from given data_handler object, runs model prediction,
collects losses/metrics and computes gradient & updates weights
if process is trn.
Args:
data_handler (DataLoader): data loader object
model (torch.nn.Module): model for training/inference
optimizer (torch.optim module): optimizer
class_wts (List[float]): class weights for weighted loss
loss_wts (List[float]): weightage for loss functions
gamma (int): focusing factor gamma for focal loss
amp (bool): Whether to use mixed precision
save_name (str): name of model (for saving predictions)
Returns:
metrics (NamedTuple[Metrics]): Containing selected metrics for epoch
loss_list (dict): Dictionary containing breakup of loss over the epoch
'''
num_batches = data_handler.num_batches
batch_size = data_handler.batch_size
process = data_handler.data_type
running_loss = 0
# loss_list = {'main_bce': 0, 'aux_bce': 0, 'conicity': 0}
loss_list = {'main_focal_loss': 0, 'aux_focal_loss': 0, 'conicity': 0}
# loss_list = {'main_focal_loss': 0, 'aux_focal_loss': 0}
# loss_list = {'main_focal_loss': 0}
pred_list = []
label_list = []
softpred_list = []
filename_list = []
if amp:
scaler = torch.cuda.amp.GradScaler()
with trange(num_batches, desc=process, ncols=100) as t:
for m in range(num_batches):
X, y, file_names = data_handler.datagen.__next__()
y_onehot = aux.toCategorical(y).cuda()
if process == 'trn':
optimizer.zero_grad()
model.train()
# pred = model.forward(X)
pred, loss, loss_list = predict_compute_loss(
X, model, y_onehot, class_wts, loss_wts, loss_list,
process, gamma, amp
)
if amp:
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
else:
loss.backward()
optimizer.step()
elif process == 'val' or process == 'tst':
model.eval()
with torch.no_grad():
# pred = model.forward(X)
pred, loss, loss_list = predict_compute_loss(
X, model, y_onehot, class_wts, loss_wts, loss_list,
process, gamma, amp
)
running_loss += loss
hardPred = torch.argmax(pred, 1)
pred_list.append(hardPred.cpu())
softpred_list.append(pred.detach().cpu())
label_list.append(y.cpu())
filename_list += file_names
t.set_postfix(loss=running_loss.item()/(float(m+1)*batch_size))
t.update()
final_loss = running_loss/(float(m+1)*batch_size)
for loss_name in loss_list.keys():
loss_list[loss_name] /= (float(m+1)*batch_size)
metrics = compute_metrics(pred_list, label_list, softpred_list,
filename_list, final_loss, process,
save_name)
return metrics, loss_list
def test_time_aug(process, model, aug_names, class_wts, loss_wts, gamma,
fold_num, save_name):
pred_list = []
label_list = []
softpred_list = []
filename_list = []
running_loss = 0
loss_list = {'main_focal_loss': 0, 'aux_focal_loss': 0, 'conicity': 0}
data_handler = DataLoader(process, fold_num, len(aug_names),
'all', in_channels=0, aug_names=aug_names)
num_batches = data_handler.num_batches
with trange(num_batches, desc=process, ncols=100) as t:
for m in range(num_batches):
X, y, file_names = data_handler.datagen.__next__()
y_onehot = aux.toCategorical(y).cuda()
model.eval()
with torch.no_grad():
pred, loss, loss_list = predict_compute_loss(
X, model, y_onehot, class_wts, loss_wts, loss_list,
process, gamma, amp=True
)
pred = pred.mean(axis=0).unsqueeze(0)
running_loss += loss
hardPred = torch.argmax(pred, 1)
pred_list.append(hardPred.cpu())
softpred_list.append(pred.detach().cpu())
label_list.append(y[0].cpu().unsqueeze(0))
filename_list.append(file_names[0])
t.set_postfix(loss=running_loss.item()/(float(m+1)*7))
t.update()
final_loss = running_loss/(float(m+1))
metrics = compute_metrics(pred_list, label_list, softpred_list,
filename_list, final_loss, process,
save_name+'_tta')
return metrics, loss_list
def compute_metrics(pred_list, label_list, softpred_list, filename_list,
final_loss, process, save_name, plot=None):
acc = aux.globalAcc(pred_list, label_list)
f1 = sklearn.metrics.f1_score(torch.cat(label_list),
torch.cat(pred_list), labels=None,
average='binary')
auroc, auprc, fpr_tpr_arr, precision_recall_arr = aux.AUC(
softpred_list, label_list
)
if plot == 'AUROC':
display = sklearn.metrics.RocCurveDisplay(fpr=fpr, tpr=tpr, roc_auc=auroc)
display.plot()
plt.show()
aux.save_predictions(save_name, process, filename_list, softpred_list,
pred_list, label_list)
metrics = config.Metrics(final_loss, acc, f1, auroc, auprc, fpr_tpr_arr,
precision_recall_arr)
return metrics
def two_stage_inference(data_handler, model1, model2):
pred_list = []
label_list = []
softpred_list = []
num_batches = data_handler.num_batches
for m in range(num_batches):
X, y, file_names = data_handler.datagen.__next__()
# y_onehot = aux.toCategorical(y).cuda()
model1.eval()
model2.eval()
# pred, conicity = model1.forward(X)
pred = model1.forward(X)
pred = F.softmax(pred, 1)
hardPred = torch.argmax(pred, 1)
if hardPred[0]:
X = X[:, 0, :, :]
X = X.unsqueeze(1)
pred, _ = model2.forward(X)
pred = F.softmax(pred, 1)
hardPred = torch.argmax(pred, 1)
hardPred += 1
pred_list.append(hardPred.cpu())
softpred_list.append(pred.detach().cpu())
label_list.append(y.cpu())
acc = aux.globalAcc(pred_list, label_list)
f1 = sklearn.metrics.f1_score(torch.cat(label_list),
torch.cat(pred_list), labels=None,
average='macro')
print(acc, f1)
def two_stage_inference_offline(analyzer_stg1, analyzer_stg2, model_stg2,
tst_data_handler):
"""
Use saved predictions from the two stages to obtain overall performance
"""
pred_list_stg1 = analyzer_stg1.get_analysis(['Normal', 'Pneumonia'],
silent=True)
pred_list_stg2 = analyzer_stg2.get_analysis(['Pneumonia', 'COVID'],
silent=True)
name_list_stg1 = analyzer_stg1.name_list
name_list_stg2 = analyzer_stg2.name_list
stg2_map = {}
final_pred_list = []
for idx, name in enumerate(name_list_stg2):
stg2_map[name] = pred_list_stg2[idx]
ct = 0
for idx, name in enumerate(name_list_stg1):
pred_stg1 = pred_list_stg1[idx]
if pred_stg1 == 1:
if name in name_list_stg2:
pred_stg2 = stg2_map[name]
else:
# for case when a sample was misclassified as normal in stage1
ct += 1
img = tst_data_handler.preprocess_data(
config.PATH+'/'+name.rsplit('_', 1)[0], 'normal', False)
model_stg2.eval()
pred_soft, _ = model_stg2.forward(img.unsqueeze(0))
pred_soft = F.softmax(pred_soft, 1)
pred_stg2 = torch.argmax(pred_soft).item()
pred = pred_stg2 + 1
else:
pred = pred_stg1
final_pred_list.append(pred)
label_list = [int(name.split('_')[1]) for name in name_list_stg1]
report = sklearn.metrics.classification_report(
label_list, final_pred_list,
target_names=['Normal', 'Pneumonia', 'COVID'], digits=4)
print(report)
print(ct)
def main():
# Take options and hyperparameters from user
torch.autograd.set_detect_anomaly(True)
parser = aux.getOptions()
args = parser.parse_args()
if args.saveName is None:
print("Warning! Savename unspecified. No logging will take place."
"Model will not be saved.")
bestValRecord = None
logFile = None
else:
bestValRecord, logFile = aux.initLogging(args.saveName, 'F1')
with open(os.path.join('logs', bestValRecord), 'r') as statusFile:
bestVal = float(statusFile.readline().strip('\n').split()[-1])
loss_wts = tuple(map(float, args.lossWeights.split(',')))
amp = (args.amp == 'True')
# Inits
all_aug_names = ['normal', 'rotated', 'gaussNoise', 'mirror',
'blur', 'sharpen', 'translate']
trn_data_handler = DataLoader('trn', args.foldNum, args.batchSize,
# 'unequal_all',
'random',
# None,
# 'random_class0_all_class1',
undersample=False, sample_size=3000,
# in_channels=0)
aug_names=all_aug_names, in_channels=3)
val_data_handler = DataLoader('val', args.foldNum, args.batchSize,
None, in_channels=3)
tst_data_handler = DataLoader('tst', args.foldNum, args.batchSize,
None, in_channels=3)
model = MARL(in_channels=1, num_blocks=4, num_layers=4,
num_classes=2, downsample_freq=1).cuda()
# model = RobustDenseNet(pretrained=True, num_classes=2).cuda()
# print(summary(model, torch.zeros((1, 1, 512, 512)).cuda(), show_input=True))
# model = resnet18(num_classes=2).cuda()
# model = nn.DataParallel(model)
if args.loadModelFlag:
print(args.saveName)
successFlag = aux.loadModel(args.loadModelFlag, model, args.saveName)
if successFlag == 0:
return 0
elif successFlag == 1:
print("Model loaded successfully")
class_wts = aux.getClassBalancedWt(0.9999, [4000, 4000])
optimizer = torch.optim.Adam(model.parameters(), lr=args.learningRate,
weight_decay=args.weightDecay)
# # Learning
if args.runMode == 'all':
for epochNum in range(args.initEpochNum, args.initEpochNum
+ args.nEpochs):
trnMetrics, trn_loss_list = run_model(
trn_data_handler, model, optimizer, class_wts,
loss_wts=loss_wts, gamma=args.gamma, amp=amp,
save_name=args.saveName
)
aux.logMetrics(epochNum, trnMetrics, trn_loss_list, 'trn', logFile,
'classify')
torch.save(model.state_dict(), 'savedModels/'+args.saveName+'.pt')
# epochNum = 0
valMetrics, val_loss_list = run_model(
val_data_handler, model, optimizer, class_wts, loss_wts,
args.gamma, amp, save_name=args.saveName
)
aux.logMetrics(epochNum, valMetrics, val_loss_list, 'val', logFile,
'classify')
if bestValRecord and valMetrics.F1 > bestVal:
bestVal = aux.save_chkpt(bestValRecord, bestVal, valMetrics.F1,
'F1', model, args.saveName)
tstMetrics, tst_loss_list = run_model(
tst_data_handler, model, optimizer, class_wts, loss_wts,
args.gamma, amp, args.saveName
)
aux.logMetrics(epochNum, tstMetrics, tst_loss_list, 'tst', logFile,
'classify')
elif args.runMode == 'two_stage_inference':
model_stage1 = RobustDenseNet(pretrained=False, num_classes=2).cuda()
# model_stage1 = MARL(in_channels=1, num_blocks=4, num_layers=4,
# num_classes=2, downsample_freq=1).cuda()
# model_stage1 = nn.DataParallel(model_stage1)
model_stage2 = MARL(in_channels=1, num_blocks=4, num_layers=4,
num_classes=2, downsample_freq=1).cuda()
# model_stage2 = nn.DataParallel(model_stage2)
flg1 = aux.loadModel('chkpt', model_stage1,
# 'stage1_covidx_split1_densenet121_wAux_FL')
'bimcv_stg1_fold4_cl')
# 'stage1_covidx_split1')
flg2 = aux.loadModel('main', model_stage2,
# 'covidx_stage2_wSeg_segTest')
'bimcv_stg2_fold4_cl')
# 'covidx_stage2_noSeg_FL_pairAug_attn_fold0')
print(flg1, flg2)
two_stage_inference(val_data_handler, model_stage1, model_stage2)
two_stage_inference(tst_data_handler, model_stage1, model_stage2)
elif args.runMode == 'two_stage_inference_offline':
filename1 = (
'predictions/bimcv_stage1_wSeg_FL_pairAug_tst_preds.csv')
filename2 = (
'predictions/bimcv_stage2_wSeg_FL_pairAug_attn_tst_preds.csv')
analyzer_stg1 = PredAnalyzer(filename1, True, None)
# analyzer_stg2 = PredAnalyzer(filename2, True, 'AUROC')
analyzer_stg2 = PredAnalyzer(filename2, True, None)
model_stage2 = MARL(in_channels=1, num_blocks=4, num_layers=4,
num_classes=2, downsample_freq=1).cuda()
model_stage2 = nn.DataParallel(model_stage2)
flg2 = aux.loadModel('chkpt', model_stage2,
'bimcv_stage2_wSeg_FL_pairAug_attn')
two_stage_inference_offline(analyzer_stg1, analyzer_stg2, model_stage2,
tst_data_handler)
else:
if args.runMode == 'val':
data_handler = val_data_handler
elif args.runMode == 'tst':
data_handler = tst_data_handler
if args.tta == 'True':
metrics, loss_list = test_time_aug(
args.runMode, model, all_aug_names, class_wts, loss_wts,
args.gamma, args.foldNum, args.saveName
)
else:
metrics, loss_list = run_model(
data_handler, model, optimizer, class_wts, loss_wts,
args.gamma, amp, args.saveName
)
aux.logMetrics(1, metrics, loss_list, args.runMode, logFile,
'classify')
if __name__ == '__main__':
main()