-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcategorical_and_missing_data_template.py
43 lines (32 loc) · 1.24 KB
/
categorical_and_missing_data_template.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# Data Preprocessing
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Importing the dataset
dataset = pd.read_csv('Data.csv')
X = dataset.iloc[:, :-1].values # Independent Variables
y = dataset.iloc[:, 3].values # Dependent Variables
# Taking care of missing data
from sklearn.preprocessing import Imputer
imputer = Imputer(missing_values = 'NaN', strategy = 'mean', axis = 0)
imputer.fit(X[:, 1:3])
X[:, 1:3] = imputer.transform(X[:, 1:3])
# Encoding categorical data
# Encoding the Independent Variable
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X = LabelEncoder()
X[:, 0] = labelencoder_X.fit_transform(X[:, 0])
onehotencoder = OneHotEncoder(categorical_features = [0])
X = onehotencoder.fit_transform(X).toarray()
# Encoding the Dependent Variable
labelencoder_y = LabelEncoder()
y = labelencoder_y.fit_transform(y)
# Splitting the dataset into Training Set and Test set
from sklearn.cross_validation import train_test_split
X_train,X_test, y_train, y_test = train_test_split(X,y,test_size=0.2,random_state=0)
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test)