-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpredict.py
147 lines (135 loc) · 5.89 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
from email.policy import default
import pathlib
import time
from termcolor import cprint
import torch as th
import cog
import util
import sys
sys.path.append("glide-text2im")
class Predictor(cog.BasePredictor):
def setup(self):
pass
def predict(
self,
prompt: str = cog.Input(
description="Prompt to use.",
),
style_prompt: str = cog.Input(
description="Additional style guidance to use. Handles any sequence of tokens, but works particularly well on the listed pretrained 'dataset tokens'.",
default="<pixelart>",
choices=["<pixelart>", "<cc12m>", "<pokemon>", "<country211>", "<pixelart>", "<openimages>", "<ffhq>", "<coco>", "<vaporwave>", "<virtualgenome>", "<imagenet>"]
),
batch_size: int = cog.Input(
description="Batch size. Number of generations to predict", ge=1, le=8, default=1
),
side_x: str = cog.Input(
description="Must be multiple of 8. Going above 64 is not recommended. Actual image will be 4x larger.",
choices=["32", "48", "64", "80", "96", "112", "128"],
default="64",
),
side_y: str = cog.Input(
description="Must be multiple of 8. Going above 64 is not recommended. Actual image size will be 4x larger.",
choices=["32", "48", "64", "80", "96", "112", "128"],
default="64",
),
upsample_stage: bool = cog.Input(
description="If true, uses both the base and upsample models. If false, only the (finetuned) base model is used.",
default=True,
),
upsample_temp: str = cog.Input(
description="Upsample temperature. Consider lowering to ~0.997 for blurry images with fewer artifacts.",
choices=["0.996", "0.997", "0.998", "0.999", "1.0"],
default="0.997",
),
guidance_scale: float = cog.Input(
description="Classifier-free guidance scale. Higher values move further away from unconditional outputs. Lower values move closer to unconditional outputs. Negative values guide towards semantically opposite classes. 4-16 is a reasonable range.",
default=4,
),
style_guidance_scale: float = cog.Input(
description="Same as guidance scale, but applied to glide model outputs from the style prompt instead of the prompt.",
default=4,
),
timestep_respacing: str = cog.Input(
description="Number of timesteps to use for base model PLMS sampling. Usually don't need more than 50.",
choices=[ "15", "17", "19", "21", "23", "25", "27", "30", "35", "40", "50", "100"],
default="27",
),
sr_timestep_respacing: str = cog.Input(
description="Number of timesteps to use for upsample model PLMS sampling. Usually don't need more than 20.",
choices=["15", "17", "19", "21", "23", "25", "27"],
default="17",
),
seed: int = cog.Input(description="Seed for reproducibility", default=0),
) -> cog.Path:
th.manual_seed(seed)
side_x, side_y, upsample_temp = int(side_x), int(side_y), float(upsample_temp)
device = th.device("cuda" if th.cuda.is_available() else "cpu")
cprint("Creating model and diffusion.", "white")
model, diffusion, options = util.init_model(
model_path="glide-ft-4x41618-fp16.pt",
timestep_respacing=timestep_respacing,
device=device,
model_type="base",
)
model.eval()
cprint("Done.", "green")
cprint("Loading GLIDE upsampling diffusion model.", "white")
model_up, diffusion_up, options_up = util.init_model(
model_path="coco_upsample_latest_fp16.pt",
timestep_respacing=sr_timestep_respacing,
device=device,
model_type="upsample",
)
model_up.eval()
cprint("Done.", "green")
cprint(
f"Running base GLIDE text2im model to generate {side_x}x{side_y} samples.",
"white",
)
current_time = time.time()
low_res_samples = util.run_glide_text2im(
model=model,
diffusion=diffusion,
options=options,
prompt=prompt,
batch_size=batch_size,
guidance_scale=guidance_scale,
side_x=side_x,
side_y=side_y,
device=device,
sample_method="plms",
style_prompt=style_prompt,
cls_guidance_scale=style_guidance_scale,
)
elapsed_time = time.time() - current_time
cprint(f"Base inference time: {elapsed_time} seconds.", "green")
low_res_pil_images = util.pred_to_pil(low_res_samples)
low_res_pil_images.save("/src/base_predictions.png")
sr_base_x = int(side_x * 4.0)
sr_base_y = int(side_y * 4.0)
if upsample_stage:
cprint(
f"Upsampling from {side_x}x{side_y} to {sr_base_x}x{sr_base_y}.",
"white",
)
current_time = time.time()
hi_res_samples = util.run_glide_text2im(
model=model_up,
diffusion=diffusion_up,
options=options_up,
prompt=prompt,
batch_size=batch_size,
device=device,
upsample_temp=upsample_temp,
side_x=sr_base_x,
side_y=sr_base_y,
sample_method="plms",
input_images=low_res_samples.to(device),
)
elapsed_time = time.time() - current_time
cprint(f"SR Elapsed time: {elapsed_time} seconds.", "green")
hi_res_pil_images = util.pred_to_pil(hi_res_samples)
hi_res_pil_images.save("/src/sr_predictions.png")
return cog.Path("/src/sr_predictions.png")
return cog.Path("/src/base_predictions.png")