-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtest_zeroshot.py
175 lines (135 loc) · 4.73 KB
/
test_zeroshot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import json
import logging
from typing import List
import os
import sys
import numpy as np
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoTokenizer, BertTokenizer
from vilbert.vilbert import BertConfig
from utils.cli import get_parser
from utils.dataset.common import pad_packed, load_json_data
from utils.dataset.zero_shot_dataset import ZeroShotDataset
from utils.dataset import PanoFeaturesReader
from airbert import Airbert
from train import get_model_input, get_mask_options
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
stream=sys.stdout,
)
logger = logging.getLogger(__name__)
def main():
# ----- #
# setup #
# ----- #
# command line parsing
parser = get_parser(training=False)
parser.add_argument(
"--split",
choices=["train", "val_seen", "val_unseen", "test"],
required=True,
help="Dataset split for evaluation",
)
args = parser.parse_args()
# force arguments
args.num_beams = 1
args.batch_size = 1
print(args)
# create output directory
save_folder = os.path.join(args.output_dir, f"run-{args.save_name}")
if not os.path.exists(save_folder):
os.makedirs(save_folder)
# ------------ #
# data loaders #
# ------------ #
# load a dataset
# tokenizer = BertTokenizer.from_pretrained(args.bert_tokenizer, do_lower_case=True)
tokenizer = AutoTokenizer.from_pretrained(args.bert_tokenizer)
if not isinstance(tokenizer, BertTokenizer):
raise ValueError("fix mypy")
features_reader = PanoFeaturesReader(args.img_feature, args.in_memory)
vln_data = f"data/task/{args.prefix}R2R_{args.split}.json"
print(vln_data)
dataset = ZeroShotDataset(
vln_path=vln_data,
tokenizer=tokenizer,
features_reader=features_reader,
max_instruction_length=args.max_instruction_length,
max_path_length=args.max_path_length,
max_num_boxes=args.max_num_boxes,
default_gpu=True,
highlighted_language=args.highlighted_language,
)
data_loader = DataLoader(
dataset,
shuffle=False,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=True,
)
# ----- #
# model #
# ----- #
config = BertConfig.from_json_file(args.config_file)
config.cat_highlight = args.cat_highlight
model = Airbert.from_pretrained(args.from_pretrained, config, default_gpu=True)
model.cuda()
logger.info(f"number of parameters: {sum(p.numel() for p in model.parameters()):,}")
# ---------- #
# evaluation #
# ---------- #
with torch.no_grad():
all_scores = eval_epoch(model, data_loader, args)
# save scores
scores_path = os.path.join(save_folder, f"{args.prefix}_scores_{args.split}.json")
json.dump(all_scores, open(scores_path, "w"))
logger.info(f"saving scores: {scores_path}")
# convert scores into results format
vln_data = load_json_data(vln_data)
instr_id_to_beams = {
f"{item['path_id']}_{i}": item["beams"]
for item in vln_data
for i in range(len(item["instructions"]))
}
all_results = convert_scores(all_scores, instr_id_to_beams)
# save results
results_path = os.path.join(save_folder, f"{args.prefix}_results_{args.split}.json")
json.dump(all_results, open(results_path, "w"))
logger.info(f"saving results: {results_path}")
def eval_epoch(model, data_loader, args):
device = next(model.parameters()).device
model.eval()
all_scores = []
for batch in tqdm(data_loader):
# load batch on gpu
batch = tuple(t.cuda(device=device, non_blocking=True) for t in batch)
instr_ids = get_instr_ids(batch)
# get the model output
output = model(*get_model_input(batch))
opt_mask = get_mask_options(batch)
vil_logit = pad_packed(output[0].squeeze(1), opt_mask)
for instr_id, logit in zip(instr_ids, vil_logit):
all_scores.append((instr_id, logit.tolist()))
return all_scores
def convert_scores(all_scores, instr_id_to_beams):
output = []
for instr_id, scores in all_scores:
idx = np.argmax(scores)
beams = instr_id_to_beams[instr_id]
trajectory = []
trajectory += [beams[idx], 0, 0]
output.append({"instr_id": instr_id, "trajectory": trajectory})
# assert len(output) == len(beam_data)
return output
# ------------- #
# batch parsing #
# ------------- #
def get_instr_ids(batch) -> List[str]:
instr_ids = batch[12]
return [str(item[0].item()) + "_" + str(item[1].item()) for item in instr_ids]
if __name__ == "__main__":
main()