-
-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathggify.py
313 lines (279 loc) · 8.89 KB
/
ggify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
from __future__ import annotations
import argparse
import os
import re
import shlex
import subprocess
import sys
import huggingface_hub
import tqdm
from huggingface_hub.hf_api import RepoFile
hf_token = huggingface_hub.get_token()
KNOWN_QUANTIZATION_TYPES = {
"q4_0",
"q4_1",
"q5_0",
"q5_1",
"q2_k",
"q3_k_s",
"q3_k_m",
"q3_k_l",
"q4_k_s",
"q4_k_m",
"q5_k_s",
"q5_k_m",
"q6_k",
"q8_0",
}
def get_llama_cpp_dir():
dir = os.environ.get("LLAMA_CPP_DIR", "./")
if not os.path.isdir(dir):
raise ValueError(f"Could not find llama.cpp directory at {dir}")
return dir
class ToolNotFoundError(RuntimeError):
pass
def find_tool(
dir: str,
tool_name: str,
candidate_names: list[str] | None = None,
raise_on_missing=True,
) -> str | None:
for candidate_name in candidate_names or [tool_name]:
candidate_path = os.path.join(dir, candidate_name)
if os.path.isfile(candidate_path):
return candidate_path
if raise_on_missing:
raise ToolNotFoundError(
f"Could not find {tool_name} in {dir} (set LLAMA_CPP_DIR (currently {get_llama_cpp_dir()}?))",
)
return None
PYTHON_EXE = os.environ.get("PYTHON_EXE", sys.executable)
GG_MODEL_EXTENSION = ".gguf"
def print_and_check_call(args: list):
print("=> Running:", shlex.join(args))
return subprocess.check_call(args)
def quantize(
dirname,
*,
src_type: str,
dest_type: str,
) -> str:
q_model_path = os.path.join(
dirname,
f"ggml-model-{dest_type}{GG_MODEL_EXTENSION}",
)
nonq_model_path = os.path.join(
dirname,
f"ggml-model-{src_type}{GG_MODEL_EXTENSION}",
)
if not os.path.isfile(q_model_path):
if not nonq_model_path:
raise ValueError(f"Could not find nonquantized model at {nonq_model_path}")
quantize_cmd = find_tool(get_llama_cpp_dir(), "quantize")
concurrency = str(os.cpu_count() + 2)
print_and_check_call([quantize_cmd, nonq_model_path, dest_type, concurrency])
return q_model_path
def get_ggml_model_path(dirname: str, convert_type: str):
if convert_type in ("0", "f32"):
type_moniker = "f32"
elif convert_type in ("1", "f16"):
type_moniker = "f16"
else:
raise ValueError(f"Unknown type {convert_type}")
model_path = os.path.join(dirname, f"ggml-model-{type_moniker}{GG_MODEL_EXTENSION}")
return model_path
def convert_pth(
dirname,
*,
convert_type: str,
vocab_type: str,
converter: str,
):
model_path = get_ggml_model_path(dirname, convert_type)
try:
stat = os.stat(model_path)
if stat.st_size < 65536:
print(f"Not believing a {stat.st_size:d}-byte model is valid, reconverting")
raise FileNotFoundError()
except FileNotFoundError:
converters = {
"convert-hf-to-gguf": lambda: convert_using_hf_to_gguf(dirname, convert_type=convert_type),
"convert": lambda: convert_using_convert_py(
dirname,
convert_type=convert_type,
vocab_type=vocab_type,
),
}
if converter == "auto":
for con, func in converters.items():
try:
func()
break
except ToolNotFoundError:
pass
else:
raise ToolNotFoundError("Could not find a converter")
elif converter in converters:
converters[converter]()
else:
raise ValueError(f"Unknown converter {converter!r}")
return model_path
def convert_using_convert_py(dirname, *, convert_type, vocab_type):
convert_py = find_tool(get_llama_cpp_dir(), "convert.py")
print_and_check_call(
[
PYTHON_EXE,
convert_py,
dirname,
f"--outtype={convert_type}",
f"--vocab-type={vocab_type}",
],
)
def convert_using_hf_to_gguf(dirname, *, convert_type):
convert_hf_to_gguf_py = find_tool(
get_llama_cpp_dir(),
"convert-hf-to-gguf.py",
[
"convert-hf-to-gguf.py",
"convert_hf_to_gguf.py",
],
)
print_and_check_call(
[
PYTHON_EXE,
convert_hf_to_gguf_py,
dirname,
f"--outtype={convert_type}",
"--verbose",
],
)
def convert_pth_to_types(
dirname,
*,
types,
remove_nonquantized_model=False,
nonquantized_type: str,
vocab_type: str,
converter: str = "auto",
):
# If f32 is requested, or a quantized type is requested, convert to fp32 GGML
nonquantized_path = None
if nonquantized_type in types or any(t.startswith("q") for t in types):
nonquantized_path = convert_pth(
dirname,
convert_type=nonquantized_type,
vocab_type=vocab_type,
converter=converter,
)
# Other types
for type in types:
if type.startswith("q"):
q_model_path = quantize(
dirname,
src_type=nonquantized_type,
dest_type=type.upper(),
)
yield q_model_path
elif type in ("f16", "f32") and type != nonquantized_type:
yield convert_pth(dirname, convert_type=type)
elif type == nonquantized_type:
pass # already dealt with
else:
raise ValueError(f"Unknown type {type}")
if nonquantized_type not in types and remove_nonquantized_model:
nonq_model_path = get_ggml_model_path(dirname, nonquantized_type)
print(f"Removing non-quantized model {nonq_model_path}")
os.remove(nonq_model_path)
elif nonquantized_path:
yield nonquantized_path
def download_repo(repo, dirname):
files = [fi for fi in huggingface_hub.list_repo_tree(repo, token=hf_token) if isinstance(fi, RepoFile)]
if not any(fi.rfilename.startswith("pytorch_model") for fi in files):
print(
f"Repo {repo} does not seem to contain a PyTorch model, but continuing anyway",
)
with tqdm.tqdm(files, unit="file", desc="Downloading files...") as pbar:
fileinfo: RepoFile
for fileinfo in pbar:
filename = fileinfo.rfilename
basename = os.path.basename(filename)
if basename.startswith("."):
continue
if basename.endswith(".gguf"):
continue
if os.path.isfile(os.path.join(dirname, filename)):
continue
pbar.set_description(f"{filename} ({fileinfo.size // 1048576:d} MB)")
huggingface_hub.hf_hub_download(
repo_id=repo,
filename=filename,
local_dir=dirname,
token=hf_token,
)
def main():
quants = ",".join(KNOWN_QUANTIZATION_TYPES)
ap = argparse.ArgumentParser()
ap.add_argument("repo", type=str, help="Huggingface repository to convert")
ap.add_argument(
"--types",
"-t",
type=str,
help=f"Quantization types, comma-separated (default: %(default)s; available: f16,f32,{quants})",
default="q4_0,q4_1,q8_0",
)
ap.add_argument(
"--llama-cpp-dir",
type=str,
help="Directory containing llama.cpp (default: %(default)s)",
default=get_llama_cpp_dir(),
)
ap.add_argument(
"--nonquantized-type",
type=str,
choices=("f16", "f32"),
default="f32",
help="Dtype of the non-quantized model (default: %(default)s)",
)
ap.add_argument(
"--keep-nonquantized",
action="store_true",
help="Don't remove the nonquantized model after quantization (unless it's explicitly requested)",
)
ap.add_argument(
"--vocab-type",
type=str,
default="spm",
)
ap.add_argument(
"--use-convert-hf-to-gguf",
action="store_true",
help="Use convert_hf_to_gguf.py instead of convert.py (deprecated; use `--converter`)",
)
ap.add_argument(
"--converter",
default="auto",
choices=("auto", "convert", "convert-hf-to-gguf"),
)
args = ap.parse_args()
if args.use_convert_hf_to_gguf:
args.converter = "convert-hf-to-gguf"
if args.llama_cpp_dir:
os.environ["LLAMA_CPP_DIR"] = args.llama_cpp_dir
repo = args.repo
dirname = os.path.join(".", "models", repo.replace("/", "__"))
download_repo(repo, dirname)
types = set(re.split(r",\s*", args.types))
output_paths = list(
convert_pth_to_types(
dirname,
types=types,
remove_nonquantized_model=not args.keep_nonquantized,
nonquantized_type=args.nonquantized_type,
vocab_type=args.vocab_type,
converter=args.converter,
),
)
for output_path in output_paths:
print(output_path)
if __name__ == "__main__":
main()