From 03e4f98717d6a29cc2a682e4a157caeaf0eb4cc4 Mon Sep 17 00:00:00 2001 From: Alexandru Fikl Date: Thu, 23 Nov 2023 15:02:36 +0200 Subject: [PATCH] feat: implement FLMM starting weights --- docs/references.rst | 5 + src/pycaputo/generating_functions.py | 314 ++++++++++++++----- src/pycaputo/quadrature/riemann_liouville.py | 19 +- tests/test_generating_functions.py | 96 +++--- 4 files changed, 317 insertions(+), 117 deletions(-) diff --git a/docs/references.rst b/docs/references.rst index 19ede1f..60a46b4 100644 --- a/docs/references.rst +++ b/docs/references.rst @@ -22,6 +22,11 @@ References Computer Methods in Applied Mechanics and Engineering, Vol. 194, pp. 743-773, 2005, `DOI `__. +.. [Diethelm2006] K. Diethelm, J. M. Ford, N. J. Ford, M. Weilbeer, + *Pitfalls in Fast Numerical Solvers for Fractional Differential Equations*, + Journal of Computational and Applied Mathematics, Vol. 186, pp. 482--503, 2006, + `DOI `__. + .. [Shen2011] J. Shen, T. Tang, L.-L. Wang, *Spectral Methods - Algorithms, Analysis and Applications*, Springer, 2011. diff --git a/src/pycaputo/generating_functions.py b/src/pycaputo/generating_functions.py index 77577f3..49962a0 100644 --- a/src/pycaputo/generating_functions.py +++ b/src/pycaputo/generating_functions.py @@ -9,22 +9,160 @@ from pycaputo.utils import Array -# {{{ Lubich1986 weights +# {{{ FLMM: Starting Weights -def lubich_bdf_starting_weights_count(order: int, alpha: float) -> int: - """An estimate for the number of starting weights from [Lubich1986]_. +def lmm_starting_weights( + w: Array, sigma: Array, alpha: float, *, atol: float | None = None +) -> Iterator[tuple[int, Array]]: + r"""Constructs starting weights for a given set of weights *w* of a + fractional-order linear multistep method (FLMM). - :arg order: order of the BDF method. - :arg alpha: order of the fractional derivative. + The starting weights are introduced to handle a lack of smoothness of the + function :math:`f(x)` being integrated. They are constructed in such a way + that they are exact for a series of monomials, which results in an accurate + quadrature for functions of the form :math:`f(x) = f_i x^{\sigma_i} + + x^{\beta} g(x)`, where :math:`g` is smooth and :math:`\beta < p` + (see Remark 3.6 in [Li2020]_). This ensures that the Taylor expansion near + the origin is sufficiently accurate. + + Therefore, they are obtained by solving + + .. math:: + + \sum_{k = 0}^s w_{mk} k^{\sigma_q} = + \frac{\Gamma(\sigma_q +1)}{\Gamma(\sigma_q + \alpha + 1)} + m^{\sigma_q + \alpha} - + \sum_{k = 0}^s w_{n - k} k^{\sigma_q} + + for a set of :math:`\sigma_q` powers. In the simplest case, we can just set + :math:`\sigma \in \{0, 1, \dots, p - 1\}` and obtain integer powers. Other + values can be chosen depending on the behaviour of :math:`f(x)` near the origin. + + Note that the starting weights are only computed for :math:`m \ge s`. + The initial :math:`s` steps are expected to be computed in some other + fashion. + + :arg w: convolution weights of an FLMM. + :arg sigma: an array of monomial powers for which the starting weights are exact. + :arg alpha: order of the fractional derivative to approximate. + :arg atol: absolute tolerance used for the GMRES solver. If *None*, an + exact LU-based solver is used instead (see Section 3.2 in [Diethelm2006]_ + for a discussion of these methods). + + :returns: the index and starting weights for every point :math:`m \ge s`. + """ + + from scipy.linalg import lu_factor, lu_solve + from scipy.sparse.linalg import gmres + from scipy.special import gamma + + s = sigma.size + j = np.arange(1, s + 1).reshape(-1, 1) + + A = j**sigma + assert A.shape == (s, s) + assert np.all(np.isfinite(A)) + + if atol is None: + lu_p = lu_factor(A) + + for k in range(s, w.size): + b = ( + gamma(sigma + 1) / gamma(sigma + alpha + 1) * k ** (sigma + alpha) + - A @ w[k - s : k][::-1] + ) + + if atol is None: + omega = lu_solve(lu_p, b) + else: + omega, _ = gmres(A, b, atol=atol) + + assert np.all(np.isfinite(omega)) + yield k, omega + + +def diethelm_starting_powers(order: int, alpha: float) -> Array: + r"""Generate monomial powers for the starting weights from [Diethelm2006]_. + + The proposed starting weights are given in Section 3.1 from [Diethelm2006]_ as + + .. math:: + + \sigma \in \{i + \alpha j \mid i, j \ge 0, i + \alpha j \le p - 1 \}, + + where :math:`p` is the desired order. For certain values of :math:`\alpha`, + these monomials can repeat, e.g. for :math:`\alpha = 0.1` we get the same + value for :math:`(i, j) = (1, 0)` and :math:`(i, j) = (0, 10)`. This function + returns only unique powers. + + :arg order: order of the LMM method. + :arg alpha: order of the fractional operator. + """ + from itertools import product + + result = np.array([ + gamma + for i, j in product(range(order), repeat=2) + if (gamma := i + abs(alpha) * j) <= order - 1 + ]) + + return np.array(np.unique(result)) + + +def lubich_starting_powers(order: int, alpha: float, *, beta: float = 1.0) -> Array: + r"""Generate monomial powers for the starting weights from [Lubich1986]_. + + The proposed starting weights are given in Section 4.2 of [Lubich1986]_ as + + .. math:: + + \sigma \in \{i + \beta - 1 \mid q \le p - 1\}, + + where :math:`\beta` is chosen such that :math:`q + \beta - 1 \le p - 1` + and :math:`q + \alpha + \beta - 1 < p`, according to Theorem 2.4 from + [Lubich1986]_. In general multiple such :math:`\beta` exist and choosing + more can prove beneficial. + + :arg order: order of the LMM method. + :arg alpha: order of the fractional operator. """ from math import floor - return floor(1 / abs(alpha)) - 1 + # NOTE: trying to satisfy + # 0 <= q <= p - \beta and 0 <= q < p + 1 - alpha - beta + qmax = floor(max(0, min(order - beta, order - alpha - beta + 1))) + 1 + + return np.array([q + beta - 1 for q in range(qmax)]) + + +def garrappa_starting_powers(order: int, alpha: float) -> Array: + r"""Generate monomial powers for the starting weights from + `FLMM2 `__. + + :arg order: order of the LMM method. + :arg alpha: order of the fractional operator. + """ + from math import ceil, floor + + if order == 2 and 0 < alpha < 1: + # NOTE: this is the estimate from the FLMM2 MATLAB code + k = floor(1 / abs(alpha)) + else: + # NOTE: this should be vaguely the cardinality of `diethelm_bdf_starting_powers` + k = ceil(order * (order - 1 + 2 * abs(alpha)) / (2 * abs(alpha))) + + return np.arange(k) * abs(alpha) + + +# }}} + + +# {{{ backward differentiation formulas def lubich_bdf_weights(alpha: float, order: int, n: int) -> Array: - r"""This function generates the weights for the p-BDF methods of [Lubich1986]_. + r"""This function generates the weights for the BDF methods of [Lubich1986]_. Table 1 from [Lubich1986]_ gives the generating functions. The weights constructed here are the coefficients of the Taylor expansion of the @@ -37,7 +175,7 @@ def lubich_bdf_weights(alpha: float, order: int, n: int) -> Array: \left(\sum_{k = 1}^p \frac{1}{k} (1 - \zeta)^k\right)^\alpha. The corresponding weights also have an explicit formulation based on the - recursion formula + recursion formula (see Theorem 4 in [Garrappa2015b]_) .. math:: @@ -49,9 +187,11 @@ def lubich_bdf_weights(alpha: float, order: int, n: int) -> Array: we restrict here to a maximum order of 6, as the classical BDF methods of larger orders are not stable. - :arg alpha: power of the generating function. + :arg alpha: power of the generating function, where a positive value is + used to approximate the integral and a negative value is used to + approximate the derivative. :arg order: order of the method, only :math:`1 \le p \le 6` is supported. - :arg n: number of weights. + :arg n: number of truncated terms in the power series of :math:`w^\alpha_k(\zeta)`. """ if order <= 0: raise ValueError(f"Negative orders are not supported: {order}") @@ -84,93 +224,123 @@ def lubich_bdf_weights(alpha: float, order: int, n: int) -> Array: else: raise ValueError(f"Unsupported order '{order}'") - w = np.empty(n) - indices = np.arange(n) + import scipy.special as ss + + w = np.empty(n + 1) + indices = np.arange(n + 1) - w[0] = c[0] ** alpha - for k in range(1, n): - min_j = max(0, k - c.size + 1) - max_j = k + if order == 1: + return np.array(ss.poch(indices, alpha - 1) / ss.gamma(alpha)) + else: + w[0] = c[0] ** -alpha + for k in range(1, n + 1): + min_j = max(0, k - c.size + 1) + max_j = k - j = indices[min_j:max_j] - omega = (alpha * (k - j) - j) * c[1 : k + 1][::-1] + j = indices[min_j:max_j] + omega = -(alpha * (k - j) + j) * c[1 : k + 1][::-1] - w[k] = np.sum(omega * w[min_j:max_j]) / (k * c[0]) + w[k] = np.sum(omega * w[min_j:max_j]) / (k * c[0]) return w -def lubich_bdf_starting_weights( - w: Array, s: int, alpha: float, *, beta: float = 1.0, atol: float | None = None -) -> Iterator[Array]: - r"""Constructs starting weights for a given set of weights *w* from [Lubich1986]_. +# }}} - The starting weights are introduced to handle a lack of smoothness of the - functions being integrated. They are constructed in such a way that they - are exact for a series of monomials, which results in an accurate - quadrature for functions of the form :math:`f(x) = x^{\beta - 1} g(x)`, - where :math:`g` is smooth. - Therefore, they are obtained by solving +# {{{ trapezoidal formulas - .. math:: - \sum_{k = 0}^s w_{mk} k^{q + \beta - 1} = - \frac{\Gamma(q + \beta)}{\Gamma(q + \beta + \alpha)} - m^{q + \beta + \alpha - 1} - - \sum_{k = 0}^s w_{n - k} j^{q + \beta - 1} +def trapezoidal_weights(alpha: float, n: int) -> Array: + r"""This function constructions the weights for the trapezoidal method + from Section 4.1 in [Garrappa2015b]_. - where :math:`q \in \{0, 1, \dots, s - 1\}` and :math:`\beta \ne \{0, -1, \dots\}`. - In the simplest case, we can take :math:`\beta = 1` and obtain integer - powers. Other values can be chosen depending on the behaviour of :math:`f(x)` - near the origin. + The trapezoidal method has the generating function - Note that the starting weights are only computed for :math:`m \ge s`. - The initial :math:`s` steps are expected to be computed in some other - fashion. + .. math:: - :arg w: convolution weights defined by [Lubich1986]_. - :arg s: number of starting weights. - :arg alpha: order of the fractional derivative to approximate. - :arg beta: order of the singularity at the origin. - :arg atol: absolute tolerance used for the GMRES solver. If *None*, an - exact LU-based solver is used instead. + w^\alpha(\zeta) \triangleq \left( + \frac{1}{2} \frac{1 + \zeta}{1 - \zeta} + \right)^\alpha, - :returns: the starting weights for every point :math:`x_m` starting with - :math:`m \ge s`. + which expands into an infinite series. This function truncates that series + to the first *n* terms, which give the desired weights. + + :arg alpha: power of the generating function, where a positive value is + used to approximate the integral and a negative value is used to + approximate the derivative. + :arg n: number of truncated terms in the power series of :math:`w^\alpha_k(\zeta)`. """ - if s <= 0: - raise ValueError(f"Negative s is not allowed: {s}") + try: + from scipy.fft import fft, ifft + except ImportError: + from numpy.fft import fft, ifft - if beta.is_integer() and beta <= 0: - raise ValueError(f"Values of beta in 0, -1, ... are not supported: {beta}") + omega_1 = np.empty(n + 1) + omega_2 = np.empty(n + 1) - from scipy.linalg import lu_factor, lu_solve - from scipy.sparse.linalg import gmres - from scipy.special import gamma + omega_1[0] = omega_2[0] = 1.0 + for k in range(1, n + 1): + omega_1[k] = ((alpha + 1) / k - 1) * omega_1[k - 1] + omega_2[k] = (1 + (alpha - 1) / k) * omega_2[k - 1] - q = np.arange(s) + beta - 1 - j = np.arange(1, s + 1).reshape(-1, 1) + # FIXME: this looks like it can be done faster by using rfft? + omega_1_hat = fft(omega_1, 2 * omega_1.size) + omega_2_hat = fft(omega_2, 2 * omega_2.size) + omega = ifft(omega_1_hat * omega_2_hat)[: omega_1.size].real - A = j**q - assert A.shape == (s, s) + return np.array(omega / 2**alpha) - if atol is None: - lu, p = lu_factor(A) - for k in range(s, w.size): - b = ( - gamma(q + 1) / gamma(q + alpha + 1) * k ** (q + alpha) - - A @ w[k - s : k][::-1] - ) +# }}} - if atol is None: - omega = lu_solve((lu, p), b) - else: - omega, _ = gmres(A, b, atol=atol) - yield omega +# {{{ Newton-Gregory formulas + + +def newton_gregory_weights(alpha: float, k: int, n: int) -> Array: + r"""This function constructions the weights for the Newton-Gregory method + from Section 4.2 in [Garrappa2015b]_. + + The Newton-Gregory family of methods have the generating functions + + .. math:: + + w^\alpha_k(\zeta) \triangleq + \frac{G^\alpha_k(\zeta)}{(1 - \zeta)^\alpha}, + + where :math:`G^\alpha_k(\zeta)` is the :math:`k`-term truncated power + series expansion of + + .. math:: + + G^\alpha(\zeta) = \left(\frac{1 - \zeta}{\log \zeta}\right)^\alpha. + + Note that this is not a classic expansion in the sense of [Lubich1986]_ + because the :math:`G^\alpha_k(\zeta)` function is first raised to the + :math:`\alpha` power and then truncated to :math:`k` terms. In a standard + scheme, the generating function :math:`w^\alpha_k(\zeta)` is the one that + is truncated. + + :arg alpha: power of the generating function, where a positive value is + used to approximate the integral and a negative value is used to + approximate the derivative. + :arg k: number of truncated terms in the power series of :math:`G^\alpha_k(\zeta)`. + :arg n: number of truncated terms in the power series of :math:`w^\alpha_k(\zeta)`. + """ + if k != 1: + raise ValueError(f"Only 2-term truncations are supported: '{k + 1}'") + + omega = np.empty(n + 1) + omega[0] = 1.0 + for i in range(1, n + 1): + omega[i] = (1 + (alpha - 1) / i) * omega[i - 1] + + omega[1:] = (1 - alpha / 2) * omega[1:] + alpha / 2 * omega[:-1] + omega[0] = 1 - alpha / 2.0 + + return omega # }}} diff --git a/src/pycaputo/quadrature/riemann_liouville.py b/src/pycaputo/quadrature/riemann_liouville.py index ffd3faa..52b754f 100644 --- a/src/pycaputo/quadrature/riemann_liouville.py +++ b/src/pycaputo/quadrature/riemann_liouville.py @@ -475,8 +475,9 @@ def name(self) -> str: return "RLConv" @property - def order(self) -> int: - return self.quad_order + def order(self) -> float: + # FIXME: this is not the correct order! + return min(1.0, -self.d.order) @quad.register(RiemannLiouvilleConvolutionMethod) @@ -491,9 +492,9 @@ def _quad_rl_conv( raise TypeError(f"Only uniforms points are supported: '{type(p).__name__}'") from pycaputo.generating_functions import ( - lubich_bdf_starting_weights, - lubich_bdf_starting_weights_count, + lmm_starting_weights, lubich_bdf_weights, + lubich_starting_powers, ) fx = f(p.x) if callable(f) else f @@ -504,13 +505,13 @@ def _quad_rl_conv( qf[0] = np.nan w = lubich_bdf_weights(-alpha, m.quad_order, p.size) - if np.isfinite(m.beta): - s = lubich_bdf_starting_weights_count(m.quad_order, alpha) - omegas = lubich_bdf_starting_weights(w, s, alpha, beta=m.beta) + sigma = lubich_starting_powers(m.quad_order, alpha, beta=m.beta) + omegas = lmm_starting_weights(w, sigma, alpha) - for n, omega in enumerate(omegas): - qc = np.sum(w[: n + s][::-1] * fx[: n + s]) + s = sigma.size + for n, omega in omegas: + qc = np.sum(w[:n][::-1] * fx[:n]) qs = np.sum(omega * fx[: s + 1]) qf[n + s] = dxa * (qc + qs) diff --git a/tests/test_generating_functions.py b/tests/test_generating_functions.py index 80a65d6..40b041d 100644 --- a/tests/test_generating_functions.py +++ b/tests/test_generating_functions.py @@ -14,6 +14,38 @@ set_recommended_matplotlib() +# {{{ test_lmm_starting_weights + + +@pytest.mark.parametrize("name", ["diethelm", "lubich", "garrappa"]) +@pytest.mark.parametrize("order", [1, 2, 3, 4, 5, 6]) +@pytest.mark.parametrize("alpha", [0.5, 0.9, 1.75]) +def test_lmm_starting_weights( + name: str, order: int, alpha: float, *, visualize: bool = False +) -> None: + import pycaputo.generating_functions as lmm + + if name == "diethelm": + sigma = lmm.diethelm_starting_powers(order, alpha) + elif name == "lubich": + sigma = lmm.lubich_starting_powers(order, alpha) + elif name == "garrappa": + sigma = lmm.garrappa_starting_powers(order, alpha) + else: + raise ValueError(f"Unknown starting weights: {name!r}") + + npoints = 128 + w = lmm.lubich_bdf_weights(alpha, order, npoints) + + for k, ws in lmm.lmm_starting_weights(w, sigma, alpha): + assert k >= sigma.size + assert ws.shape == sigma.shape + assert np.all(np.isfinite(ws)) + + +# }}} + + # {{{ test_lubich_bdf_weights @@ -22,61 +54,53 @@ def test_lubich_bdf_weights( order: int, alpha: float, *, visualize: bool = False ) -> None: - from pycaputo.generating_functions import ( - lubich_bdf_starting_weights, - lubich_bdf_weights, - ) + from pycaputo.generating_functions import lubich_bdf_weights from pycaputo.utils import EOCRecorder, savefig eoc = EOCRecorder(order=order) a, b = 0.0, 1.0 - s = 0 + + if visualize: + import matplotlib.pyplot as mp + + fig = mp.figure() + ax = fig.gca() from math import gamma for n in [64, 128, 256, 512, 1024]: t = np.linspace(a, b, n) h = t[1] - t[0] - w = lubich_bdf_weights(-alpha, order, n) - - if s > 0: - omega = np.fromiter( - lubich_bdf_starting_weights(w, s, -alpha, beta=1.0), - dtype=np.dtype((w.dtype, s)), - ) - else: - omega = np.zeros_like(w) + w = lubich_bdf_weights(alpha, order, n) - int_ref = t**alpha / gamma(1 + alpha) + int_ref = (t - a) ** alpha / gamma(1 + alpha) int_bdf = np.empty_like(int_ref) - int_bdf[:s] = int_ref[:s] - for k in range(s, n): - int_bdf[k] = h**alpha * (np.sum(w[: k + 1]) + np.sum(omega[k - s])) - error = la.norm(int_ref - int_bdf) / la.norm(int_ref) - logger.info("ref %.12e bdf %.12e error %.12e", int_ref[-1], int_bdf[-1], error) + fx = np.ones_like(w) + for k in range(1, n - 1): + int_bdf[k] = h**alpha * np.sum(w[: k + 1] * fx[: k + 1]) - eoc.add_data_point(h, error) - - logger.info("\n%s", eoc) + error = la.norm(int_ref[5:-5] - int_bdf[5:-5], ord=np.inf) / la.norm( + int_ref[5:-5], ord=np.inf + ) + logger.info("ref %.12e bdf %.12e error %.12e", int_ref[-5], int_bdf[-5], error) - if not visualize: - return + eoc.add_data_point(h, error) - import matplotlib.pyplot as mp + if visualize: + ax.semilogy(t, abs(int_ref - int_bdf) + 1.0e-16) + # ax.plot(t, int_ref, "k--") + # ax.plot(t, int_bdf) - fig = mp.figure() - ax = fig.gca() + logger.info("\n%s", eoc) - # ax.semilogy(t[s:], abs(int_ref - int_bdf)[s:], "k--") - ax.plot(t, int_ref, "k--") - ax.plot(t, int_bdf) - ax.set_xlabel("$t$") - ax.set_ylabel(f"$I^{{{alpha}}}_{{RL}}[1]$") + if visualize: + ax.set_xlabel("$t$") + ax.set_ylabel(f"$I^{{{alpha}}}_{{RL}}[1]$") - dirname = pathlib.Path(__file__).parent - filename = f"test_generator_lubich_bdf_{order}_{alpha}".replace(".", "_") - savefig(fig, dirname / filename) + dirname = pathlib.Path(__file__).parent + filename = f"test_lmm_lubich_bdf_{order}_{alpha}".replace(".", "_") + savefig(fig, dirname / filename) # }}}